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CHAPTER 1

Background
When the first edition of this text was released, there was a new concept emerging in 

the field of web development: using data visualizations as communication tools. Today, 

Infographics are everywhere on the Net; however, this concept is something that was 

already well established in other fields and departments for generations. At the company 

where you work, your finance department probably uses data visualizations to represent 

fiscal information both internally and externally; just take a look at the quarterly 

earnings reports for almost any publicly traded company. They are full of charts to show 

revenue by quarter, or year over year earnings, or a plethora of other historic financial 

data. All are designed to show lots and lots of data points, potentially pages and pages of 

data points, in a single easily digestible graphic.

Compare the bar chart in Google’s quarterly earnings report from back in 2007 (ah, 

when Google was a “small” company; see Figure 1-1) to a subset of the data it is based on 

in tabular format (see Figure 1-2).

https://doi.org/10.1007/978-1-4842-7202-2_1#DOI
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The bar chart is imminently more readable. We can clearly see by the shape of it 

that earnings are up and have been steadily going up each quarter. By the color coding, 

we can see the sources of the earnings, and with the annotations, we can see both 

the precise numbers that those color coding represent and what the year over year 

percentages are.

Figure 1-1. Google Q4 2007 quarterly revenue shown in a bar chart

Figure 1-2. Similar earnings data in tabular form

Chapter 1  BaCkground
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With the tabular data, you have to read labels on the left, line up the data on the 

right with those labels, do your own aggregation and comparison, and draw your own 

conclusions. There is a lot more upfront work needed to take in the tabular data, and 

there exists the very real possibility of your audience either not understanding the data 

(thus creating their own incorrect story around the data) or tuning out completely 

because of the sheer amount of work needed to take in the information.

It’s not just the finance department that uses visualizations to communicate dense 

amounts of data. Maybe your operations department uses charts to communicate 

server uptime, or your customer support department uses graphs to show call volume. 

Whatever the case, it’s no wonder that engineering and web development groups have 

finally gotten on board with this.

As part of any department, group, or industry, we have a huge amount of relevant 

data that is important for us to first be aware of so that we can refine and improve what 

we do, but also to communicate out to our stakeholders, to demonstrate our successes or 

validate resource needs, or to plan tactical roadmaps for the coming year.

Before we can do this, we need to understand what we are doing. We need to 

understand what data visualizations are, a general idea of their history, when to use 

them, and how to use them both technically and ethically.

 What Is Data Visualization?
OK, so what exactly is data visualization? Data visualization is the art and practice of 

gathering, analyzing, and graphically representing empirical information. They are 

sometimes called information graphics (“Infographics”), or even just charts and graphs. 

Whatever you call it, the goal of visualizing data is to tell the story in the data. Telling the 

story is predicated on understanding the data at a very deep level and gathering insight 

from comparisons of data points in the numbers.

There exists syntax for crafting data visualizations, patterns in the form of charts that 

have an immediately known context. We devote a chapter to each of the significant chart 

types later in the book.

Chapter 1  BaCkground
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 Time Series Charts
Time series charts show changes over time. See Figure 1-3 for a time series chart that 

shows the weighted popularity of the keyword “Data Visualization” from Google Trends 

(www.google.com/trends/).

Note that the vertical y-axis shows a sequence of numbers that increment by 20 up to 

100. These numbers represent the weighted search volume, where 100 is the peak search 

volume for our term. On the horizontal x-axis, we see years going from 2007 to 2012. The 

line in the chart represents both axes, the given search volume for each date.

From just this small sample size, we can see that the term has more than tripled 

in popularity, from a low of 29 in the beginning of 2007 up to the ceiling of 100 by the 

end of 2012.

 Bar Charts
Bar charts show comparisons of data points. See Figure 1-4 for a bar chart that 

demonstrates the search volume by country for the keyword “Data Visualization,” the 

data for which is also sourced from Google Trends.

Figure 1-3. Time series of weighted trend for the keyword “Data Visualization” 
from Google Trends

Chapter 1  BaCkground
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We can see the names of the countries on the y-axis and the normalized search 

volume, from 0 to 100, on the x-axis. Notice, though, that no time measure is given. Does 

this chart represent data for a day, a month, or a year?

Also note that we have no context for what the unit of measure is. I highlight 

these points not to answer them but to demonstrate the limitations and pitfalls of this 

particular chart type. We must always be aware that our audience does not bring the 

same experience and context that we bring, so we must strive to make the stories in our 

visualizations as self-evident as possible.

 Histograms
Histograms are a type of bar chart that displays continuous data on both axes. It is 

used to show the distribution of data or how often groups of information appear in 

the data. See Figure 1-5 for a histogram that shows how many articles the New York 

Times published each year, from 1980 to 2012, that related in some way to the subject of 

data visualization. We can see from the chart that the subject has been ramping up in 

frequency since 2009.

Figure 1-4. Google Trends breakdown of search volume by region for keyword 
“Data Visualization”

Chapter 1  BaCkground
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 Data Maps
Data maps are used to show the distribution of information over a spatial region. 

Figure 1-6 shows a data map used to demonstrate the interest in the search term “Data 

Visualization” broken out by US states.

Figure 1-5. Histogram showing distribution of NY Times articles about data 
visualization

Chapter 1  BaCkground
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In this example, the states with the darker shades indicate a greater interest in 

the search term. (This data also is derived from Google Trends, for which interest is 

demonstrated by how frequently the term “Data Visualization” is searched for on 

Google.) It’s also worth noting that while darker shades tend to be used to indicate 

greater impact, without a legend, we wouldn’t know this for sure.

 Scatter Plots
Like bar charts, scatter plots are used to compare data, but specifically to suggest 

correlations in the data, or where the data may be dependent or related in some way. 

See Figure 1-7, in which we use data from Google Correlate (www.google.com/trends/

correlate), to look for a relationship between search volume for the keyword “What is 

Data Visualization” and the keyword “How to Create Data Visualization.”

Figure 1-6. Data map of US states by interest in “Data Visualization” (data from 
Google Trends)

Chapter 1  BaCkground
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This chart suggests a positive correlation in the data, meaning that as one term 

rises in popularity, the other also rises. So what this chart suggests is that as more 

people find out about data visualization, more people want to learn how to create data 

visualizations.

The important thing to remember about correlation is that it does not suggest a 

direct cause—correlation is not causation. Just because two numbers move in the same 

direction, does not mean one is causing the other to change. There could always be a 

third variable, or coincidence, causing the correlation.

 History
If we’re talking about the history of data visualization, the modern conception of data 

visualization largely started with William Playfair. William Playfair was, among other 

things, an engineer, an accountant, a banker, and an all-around Renaissance man who 

Figure 1-7. Scatter plot examining the correlation between search volume for 
terms related to “Data Visualization,” “How to Create,” and “What is”

Chapter 1  BaCkground
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single-handedly created the time series chart, the bar chart, and the bubble chart. 

Playfair’s charts were published in the late eighteenth century into the early nineteenth 

century. He was very aware that his innovations were the first of their kind, at least in 

the realm of communicating statistical information, and he spent a good amount of 

space in his books describing how to make the mental leap to seeing bars and lines as 

representing physical things like money.

Playfair is best known for two of his books: the Commercial and Political Atlas and 

the Statistical Breviary. The Commercial and Political Atlas was published in 1786 and 

focused on different aspects of economic data from national debt to trade figures and 

even military spending. It also featured the first printed time series graph and bar chart.

His Statistical Breviary focused on statistical information around the resources of the 

major European countries of the time and introduced the bubble chart.

Playfair had several goals with his charts, among them perhaps stirring controversy, 

commenting on the diminishing spending power of the working class, and even 

demonstrating the balance of favor in the import and export figures of the British 

Empire, but ultimately his most wide-reaching goal was to communicate complex 

statistical information in an easily digested, universally understood format.

Note Both books are back in print relatively recently, thanks to howard Wainer, 
Ian Spence, and Cambridge university press.

Playfair had several contemporaries, including Dr. John Snow, who made my 

personal favorite chart: the cholera map. The cholera map is everything an informational 

graphic should be: it was simple to read, it was informative, and, most importantly, it 

solved a real problem.

The cholera map is a data map that outlined the location of all the diagnosed cases of 

cholera in the outbreak of London 1854 (see Figure 1-8). The shaded areas are recorded 

deaths from cholera, and the shaded circles on the map are water pumps. From careful 

inspection, the recorded deaths seemed to radiate out from the water pump on Broad 

Street.

Chapter 1  BaCkground
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Dr. Snow had the Broad Street water pump closed, and the outbreak ended.

Beautiful, concise, and logical.

Another historically significant information graphic is the Diagram of the Causes of 

Mortality in the Army in the East, by Florence Nightingale and William Farr. This chart is 

shown in Figure 1-9.

Figure 1-8. John Snow’s cholera map

Chapter 1  BaCkground
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Nightingale and Farr created this chart in 1856 to demonstrate the relative number of 

preventable deaths and, at a higher level, to improve the sanitary conditions of military 

installations. Note that the Nightingale and Farr visualization is a stylized pie chart. Pie 

charts are generally a circle representing the entirety of a given data set with slices of the 

circle representing percentages of a whole. The usefulness of pie charts is sometimes 

debated because it can be argued that it is harder to discern the difference in value 

between angles than it is to determine the length of a bar or the placement of a line 

against Cartesian coordinates. Nightingale seemingly avoids this pitfall by having not 

just the angle of the wedge hold value but by also altering the relative size of the slices so 

they eschew the confines of the containing circle and represent relative value. This likely 

wins over some of the detractors of pie charts; however, in some circles of science and 

academia, there is no such thing as a good pie chart!

All the above examples had specific goals or problems that they were trying to solve.

Figure 1-9. Florence Nightingale and William Farr’s Diagram of the Causes of 
Mortality in the Army in the East

Chapter 1  BaCkground
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Note a rich comprehensive history is beyond the scope of this book, but if you 
are interested in a thoughtful, incredibly researched analysis, be sure to read 
edward tufte’s The Visual Display of Quantitative Information.

 Modern Landscape
Data visualization is in the midst of a modern revitalization due in large part to the 

proliferation of cheap storage space to store logs and free and open source tools to 

analyze and chart the information in these logs.

From a consumption and appreciation perspective, there are websites that are 

dedicated to studying and talking about information graphics. There are generalized 

sites such as FlowingData that both aggregate and discuss data visualizations from 

around the Web, from astrophysics timelines to mock visualizations used on the floor of 

Congress.

The mission statement from the FlowingData About page (http://flowingdata.

com/about/) is appropriately the following: “FlowingData explores how designers, 

statisticians, and computer scientists use data to understand ourselves better—mainly 

through data visualization.”

There are more specialized sites such as quantifiedself.com that are focused on 

gathering and visualizing information about oneself. There are even web comics about 

data visualization, the quintessential one being xkcd.com, run by Randall Munroe. One 

of the most famous and topical visualizations that Randall has created thus far is the 

Radiation Dose Chart. We can see the Radiation Dose Chart in Figure 1-10 (it is available 

in high resolution here: http://xkcd.com/radiation/).

Chapter 1  BaCkground
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Figure 1-10. Radiation Dose Chart, by Randall Munroe. Note that the range 
in scale being represented in this visualization as a single block in one chart is 
exploded to show an entirely new microcosm of context and information. This 
pattern is repeated over and over again to show an incredible depth of information

Chapter 1  BaCkground
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This chart was created in response to the Fukushima Daiichi nuclear disaster of 

2011 and sought to clear up misinformation and misunderstanding of comparisons 

being made around the disaster. It did this by demonstrating the differences in scale 

for the amount of radiation from sources such as other people or a banana up to what a 

fatal dose of radiation ultimately would be—how all that compared to spending just ten 

minutes near the Chernobyl meltdown.

Over the last quarter of a century, Edward Tufte, author and professor emeritus at 

Yale University, has been working to raise the bar of information graphics. He published 

groundbreaking books detailing the history of data visualization, tracing its roots even 

further back than Playfair to the beginnings of cartography. Among his principles is 

the idea to maximize the amount of information included in each graphic—both by 

increasing the amount of variables or data points in a chart and by eliminating the use 

of what he has coined chartjunk. Chartjunk, according to Tufte, is anything included in a 

graph that is not information, including ornamentation or thick, gaudy arrows.

Tufte also invented the sparkline, a time series chart with all axes removed and only 

the trend line remaining to show historic variations of a data point without concern for 

exact context. Sparklines are intended to be small enough to place in line with a body 

of text, similar in size to the surrounding characters, and to show the recent or historic 

trend of whatever the context of the text is.

 Why Data Visualization?
In William Playfair’s introduction to the Commercial and Political Atlas, he rationalizes 

that just as algebra is the abbreviated shorthand for arithmetic, so are charts a way 

to “abbreviate and facilitate the modes of conveying information from one person to 

another.” Almost 300 years later, this principle remains the same.

Data visualizations are a universal way to present complex and varied amounts of 

information, as we saw in our opening example with the quarterly earnings report. They 

are also powerful ways to tell a story with data.

Imagine you have your Apache logs in front of you, with thousands of lines all 

resembling the following:

127.0.0.1 - - [10/Dec/2012:10:39:11 +0300] "GET / HTTP/1.1" 200 468 "-" 

"Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.1.3) Gecko/20061201 

Firefox/2.0.0.3 (Ubuntu-feisty)"
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127.0.0.1 - - [10/Dec/2012:10:39:11 +0300] "GET /favicon.ico HTTP/1.1" 200 

766 "-" "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.1.3) Gecko/20061201 

Firefox/2.0.0.3 (Ubuntu-feisty)"

Among other things, we see IP address, date, requested resource, and client user 

agent. Now imagine this repeated thousands of times—so many times that your eyes 

kind of glaze over because each line so closely resembles the ones around it that it’s hard 

to discern where each line ends, let alone what cumulative trends exist within.

By using some analysis and visualization tools such as R, or even a commercial 

product such as Splunk, we can artfully pull out all kinds of meaningful and interesting 

stories out of this log, from how often certain HTTP errors occur and for which resources 

to what our most widely used URLs are, to what the geographic distribution of our user 

base is.

This is just our Apache access log. Imagine casting a wider net, pulling in release 

information, bugs, and production incidents. What insights we could gather about what 

we do: from how our velocity impacts our defect density to how our bugs are distributed 

across our feature sets. And what better way to communicate those findings and tell 

those stories than through a universally digestible medium, like data visualizations?

The point of this book is to explore how we as developers can leverage this practice 

and medium as part of continual improvement—both to identify and quantify our 

successes and opportunities for improvements and more effectively communicate our 

learning and our progress.

 Tools
There are a number of excellent tools, environments, and libraries that we can use both 

to analyze and visualize our data. The next two sections describe them.

 Languages, Environments, and Libraries
The tools that are most relevant to web developers are Splunk, R, and the D3 (Data- 

Driven Documents) JavaScript library. See Figure 1-11 for a comparison of interest over 

time for them (from Google Trends).
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From the figure, we can see that R has had a steady consistent amount of interest 

since 200; Splunk had an introduction to the chart around 2005, had a spike of interest 

around 2006, and had steady growth since then, which only started tapering off in 

2019. As for D3, we see it just start to peak around 2011 when it was introduced and its 

predecessor Protovis was sunsetted. R and D3 have remained relatively stable in interest 

in the years since 2013.

Let’s start with the tool of choice for many developers, scientists, and statisticians: 

the R language. We have a deep dive into the R environment and language in the next 

chapter, but for now, it’s enough to know that it is an open source environment and 

language used for statistical analysis and graphical display. It is powerful, fun to use, 

and, best of all, it is free.

Splunk has seen a tremendous steady growth in interest over the last few years—and 

for good reason. It is easy to use once it’s set up, scales wonderfully, supports multiple 

concurrent users, and puts data reporting at the fingertips of everyone. You simply set it 

up to consume your log files; then you can go into the Splunk dashboard and run reports 

on key values within those logs. Splunk creates visualizations as part of its reporting 

capabilities, as well as alerting. While Splunk is a commercial product, it also offers a free 

trial version, available here: www.splunk.com/download.

D3 is a JavaScript library that allows us to craft interactive visualizations. It is the 

official follow-up to Protovis. Protovis was a JavaScript library created in 2009 by Stanford 

University’s Stanford Visualization Group. Protovis was sunsetted in 2011, and the 

creators unveiled D3. We explore the D3 library at length in Chapter 4.

Figure 1-11. Google Trends analysis of interest over time in Splunk, R, and D3
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 Analysis Tools
Aside from the previously mentioned languages and environments, there are a number 

of analysis tools available online.

A great hosted tool for analysis and research is Google Trends. Google Trends 

allows you to compare trends on search terms. It provides all kinds of great statistical 

information around those trends, including comparing their relative search volume (see 

Figure 1-12), the geographic area those trends are coming from (see Figure 1-13), and 

related keywords.

Figure 1-12. Google Trends for the terms “data scientist” and “computer scientist” 
over time; note the interest in the term “data scientist” growing rapidly from 2011 
on to match the interest in the term “computer scientist”
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Another great tool for analysis is Wolfram|Alpha (http://wolframalpha.com). See 

Figure 1-14 for a screenshot of the Wolfram|Alpha home page.

Figure 1-14. Home page for Wolfram|Alpha

Figure 1-13. Google Trends data map showing geographic location where interest 
in the keywords is originating

Chapter 1  BaCkground
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Wolfram|Alpha is not a search engine. Search engines spider and index content. 

Wolfram|Alpha is instead a question answering (QA) engine that parses human-readable 

sentences with natural language processing and responds with computed results. Say, 

for example, you want to search for the speed of light. You might go to the Wolfram|Alpha 

site and type in “what is the speed of light”. Remember that it uses natural language 

processing to parse your search query, not the keyword lookup.

The results of this query can be seen in Figure 1-15. Wolfram|Alpha essentially looks 

up all the data it has around the speed of light and presents it in a structured, categorized 

fashion. You can also export the raw data for each result.

Figure 1-15. Wolfram|Alpha results for query “what is the speed of light”
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 Process Overview
So we understand what data visualization is and have a high-level understanding of the 

history of it and an idea of the current landscape. We’re beginning to get an inkling about 

how we can start to use this in our world. We know some of the tools that are available 

to us to facilitate the analysis and creation of our charts. Now let’s look at the process 

involved.

Creating data visualizations involves four core steps:

 1. Identify a problem.

 2. Gather the data.

 3. Analyze the data.

 4. Visualize the data.

Let’s walk through each step in the process and re-create one of the previous charts 

to demonstrate the process.

 Identify a Problem
The very first step is to identify a problem we want to solve. This can be almost 

anything—from something as profound and wide reaching as figuring out why your bug 

backlog doesn’t seem to go down and stay down to seeing what feature releases over a 

given period in time caused the most production incidents and why.

For our example, let’s re-create Figure 1-5 and try to quantify the interest in data 

visualization over time as represented by the number of New York Times articles on the 

subject.

 Gather Data
We have an idea of what we want to investigate, so let’s dig in. If you are trying to solve 

a problem or tell a story around your own product, you would of course start with your 

own data—maybe your Apache logs, maybe your bug backlog, maybe exports from your 

project tracking software.
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Note If you are focusing on gathering metrics around your product and you don’t 
already have data handy, you need to invest in instrumentation. there are many 
ways to do this, usually by putting logging in your code. at the very least, you 
want to log error states and monitor those, but you may want to expand the scope 
of what you track to include for debugging purposes while still respecting both 
your user’s privacy and your company’s privacy policy. In my book, Pro JavaScript 
Performance: Monitoring and Visualization, I explore ways to track and visualize 
web and runtime performance.

One important aspect of data gathering is deciding which format your data should 

be in (if you’re lucky) or discovering which format your data is available in. We’ll next be 

looking at some of the common data formats in use today.

JSON is an acronym that stands for JavaScript Object Notation. As you probably 

know, it is essentially a way to send data as serialized JavaScript objects. We format JSON 

as follows:

[object]{

    [attribute]: [value],

    [method] : function(){},

    [array]: [item, item]

}

Another way to transfer data is in XML format. XML has an expected syntax, in which 

elements can have attributes, which have values, values are always in quotes, and every 

element must have a closing element. XML looks like this:

<parent attribute="value">

    <child attribute="value">node data</child>

</parent>

Generally, we can expect APIs (or application programing interfaces) to return XML 

or JSON to us, and our preference is usually JSON because as we can see it is a much 

more lightweight option just in sheer amount of characters used.
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But if we are exporting data from an application, it most likely will be in the form 

of a comma-separated value file, or CSV. A CSV is exactly what it sounds like: values 

separated by commas or some other sort of delimiter:

value1,value2,value3

value4,value5,value6

For our example, we’ll use the New York Times API (application programming 

interface) tool (free registration required), available at http://prototype.nytimes.com/

gst/apitool/index.html. The API tool exposes all the APIs that the New York Times 

makes available, including the Article Search API, the Campaign Finance API, and the 

Movie Review API. All we need to do is select the APIs button, then choose Article Search 

API button from choices presented, Choose the /articlesearch.json path, type in our 

search query or the phrase that we want to search for, and click “Make Request”.

This queries the API and returns the data to us, formatted as JSON. We can see the 

results in Figure 1-16.

We can then copy and paste the returned JSON data to our own file, or we could go 

the extra step to get an API key so that we can query the API from our own applications.

Figure 1-16. The NY Times API tool
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For the sake of our example, we will save the JSON data to a file that we will name 

jsNYTimesData.txt. The contents of the file will be structured like so:

{

 "offset": "0",

 "results": [

   {

     "body": "BODY COPY",

     "byline": "By AUTHOR",

     "date": "20121011",

     "title": "TITLE",

     "url": "http:\/\/  www.nytimes.com/foo.html  "

   }, {

     "body": "BODY COPY",

     "byline": "By AUTHOR",

     "date": "20121021",

     "title": "TITLE",

     "url": "http:\/\/  www.nytimes.com/bar.html  "

   }

     ],

 "tokens": [

   "JavaScript"

 ],

 "total": 2

}

Looking at the high-level JSON structure, we see an attribute named offset, an 

array named results, an array named tokens, and another attribute named total. The 

offset variable is for pagination (what page full of results we are starting with). The 

total variable is just what it sounds like: the number of results that are returned for our 

query. It’s the results array that we really care about; it is an array of objects, each of 

which corresponds to an article.

The article objects have attributes named body, byline, date, title, and url.

We now have data that we can begin to look at. That takes us to our next step in the 

process, analyzing our data.
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DATA SCRUBBING

there is often a hidden step here, one that anyone who’s dealt with data knows about: 

scrubbing the data. often the data is either not formatted exactly as we need it or, in even 

worse cases, it is dirty or incomplete.

In the best-case scenario in which your data just needs to be reformatted or even 

concatenated, go ahead and do that, but be sure to not lose the integrity of the data.

dirty data has fields out of order, fields with obviously bad information in them—think dashes 

in ZIp codes—or gaps in the data. If your data is dirty, you have several choices:

• You could drop the rows in question, but that can harm the integrity of the 

data—a good example is if you are creating a histogram, removing rows could 

change the distribution and change what your results will be.

• the better alternative is to reach out to whoever administers the source of your 

data and try and get a better version if it exists.

Whatever the case, if data is dirty or it just needs to be reformatted to be able to be imported 

into r, expect to have to scrub your data at some point before you begin your analysis.

 Analyze Data
Having data is great, but what does it mean? We determine it through analysis.

Analysis is the most crucial piece of creating data visualizations. It’s only through 

analysis that we can understand our data, and it is only through understanding it that we 

can craft our story to share with others.

To begin analysis, let’s import our data into R. Don’t worry if you aren’t completely 

fluent in R; we do a deep dive into the language in the next chapter. If you aren’t 

familiar with R yet, don’t worry about coding along with the following examples: just 

follow along to get an idea of what is happening and return to these examples after 

reading Chapters 3 and 4.
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Because our data is JSON, let’s use an R package called rjson. This will allow us to 

read in and parse JSON with the fromJSON() function:

install.packages("rjson")

library(rjson)

json_data <- fromJSON(paste(readLines("jsNYTimesData.txt"), collapse=""))

This is great, except the data is read in as pure text, including the date information. 

We can’t extract information from text because obviously text has no contextual meaning 

outside of being raw characters. So we need to iterate through the data and parse it to 

more meaningful types.

Let’s create a data frame (an array-like data type specific to R that we talk about next 

chapter), loop through our json_data object, and parse year, month, and day parts out of 

the date attribute. Let’s also parse the author name out of the byline and check to make 

sure that if the author’s name isn’t present, we substitute the empty value with the string 

"unknown".

df <- data.frame()

for(n in json_data$response$docs){

      year <-substr(n$pub_date, 0, 4)

      month <- substr(n$pub_date, 6, 7)

      day <- substr(n$pub_date, 9, 10)

      author <- substr(n$byline$original, 4, 30)

      title <- n$headline$main

      if(length(author) < 1){

            author <- "unknown"

      }

Next, we can reassemble the date into a MM/DD/YYYY formatted string and convert 

it to a date object:

datestamp <-paste(month, "/", day, "/", year, sep="")

datestamp <- as.Date(datestamp,"%m/%d/%Y")

Chapter 1  BaCkground



26

And finally, before we leave the loop, we should add this newly parsed author and 

date information to a temporary row and add that row to our new data frame:

       newrow <- data.frame(datestamp, author, title, 

stringsAsFactors=FALSE, check.rows=FALSE)

      df <- rbind(df, newrow)

}

rownames(df) <- df$datestamp

Our complete loop should look like the following:

df <- data.frame()

for(n in json_data$response$docs){

      year <-substr(n$pub_date, 0, 4)

      month <- substr(n$pub_date, 6, 7)

      day <- substr(n$pub_date, 9, 10)

      author <- substr(n$byline$original, 4, 30)

      title <- n$headline$main

      if(length(author) < 1){

            author <- "unknown"

      }

      datestamp <-paste(month, "/", day, "/", year, sep="")

      datestamp <- as.Date(datestamp,"%m/%d/%Y")

       newrow <- data.frame(datestamp, author, title, 

stringsAsFactors=FALSE, check.rows=FALSE)

      df <- rbind(df, newrow)

}

rownames(df) <- df$datestamp

Note that our example assumes that the data set returned has unique date values. 

If you get errors with this, you may need to scrub your returned data set to purge any 

duplicate rows. Also be mindful that the New York Times API may change over time. 

Between revisions of this book, the API tool changed various titles (e.g., “title” became 

“headline”). If this code doesn’t appear to work, you’ll want to read through the JSON 

data to see if, perhaps, they’ve pulled a switch again!

Once our data frame is populated, we can start to do some analysis on the data. Let’s 

start out by pulling just the year from every entry and quickly making a stem and leaf plot 

to see the shape of the data.
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Note John tukey created the stem and leaf plot in his seminal work, Exploratory 
Data Analysis. Stem and leaf plots are quick, high-level ways to see the shape of 
data, much like a histogram. In the stem and leaf plot, we construct the “stem” 
column on the left and the “leaf” column on the right. the stem consists of the 
most significant unique elements in a result set. the leaf consists of the remainder 
of the values associated with each stem. In our stem and leaf plot in the following, 
the years are our stem and r shows zeroes for each row associated with a given 
year. Something else to note is that often alternating sequential rows are combined 
into a single row, in the interest of having a more concise visualization.

First, we will create a new variable to hold the year information:

yearlist <- as.POSIXlt(df$datestamp)$year+1900

If we inspect this variable, we see that it looks something like this:

> yearlist

 [1] 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2011 

2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011

[30] 2011 2011 2011 2011 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 

2009 2009 2009 2009 2009 2009 2009 2008 2008 2008 2007 2007 2007 2007 2006

[59] 2006 2006 2006 2005 2005 2005 2005 2005 2005 2004 2003 2003 2003 2002 

2002 2002 2002 2001 2001 2000 2000 2000 2000 2000 2000 1999 1999 1999 1999

[88] 1999 1999 1998 1998 1998 1997 1997 1996 1996 1995 1995 1995 1993 1993 

1993 1993 1992 1991 1991 1991 1990 1990 1990 1990 1989 1989 1989 1988 1988

[117] 1988 1986 1985 1985 1985 1984 1982 1982 1981

That’s great, that’s exactly what we want: a year to represent every article returned. 

Next, let’s create the stem and leaf plot:

> stem(yearlist)

 1980 | 0

 1982 | 00

 1984 | 0000

 1986 | 0

 1988 | 000000
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 1990 | 0000000

 1992 | 00000

 1994 | 000

 1996 | 0000

 1998 | 000000000

 2000 | 00000000

 2002 | 0000000

 2004 | 0000000

 2006 | 00000000

 2008 | 0000000000

 2010 | 000000000000000000000000000000

 2012 | 0000000000000

Very interesting. We see a gradual build with some dips in the mid-1990s, another 

gradual build with another dip in the mid-2000s, and a strong explosion since 2010 (the 

stem and leaf plot groups years together in twos).

Looking at that, my mind starts to envision a story building about a subject growing 

in popularity. But what about the authors of these articles? Maybe they are the result of 

one or two very interested authors that have quite a bit to say on the subject.

Let’s explore that idea and take a look at the author data that we parsed out. Let’s 

look at just the unique authors from our data frame:

> length(unique(df$author))

[1] 81

We see that there are 81 unique authors or combination of authors for these articles! 

Just out of curiosity, let’s take a look at the breakdown by author for each article. Let’s 

quickly create a bar chart to see the overall shape of the data (the bar chart is shown in 

Figure 1-17):

plot(table(df$author), axes=FALSE)
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Figure 1-17. Bar chart of number of articles by author to quickly visualize

We remove the x- and y-axes to allow ourselves to focus just on the shape of the data 

without worrying too much about the granular details. From the shape, we can see a 

large number of bars with the same value; these are authors who have written a single 

article. The higher bars are authors who have written multiple articles. Essentially each 

bar is a unique author, and the height of the bar indicates the number of articles they 

have written. We can see that although there are roughly five standout contributors, most 

authors have average one article.

Note that we just created several visualizations as part of our analysis. The two steps 

aren’t mutually exclusive; we oftentimes create quick visualizations to facilitate our 

own understanding of the data. It’s the intention with which they are created that make 

them part of the analysis phase. These visualizations are intended to improve our own 

understanding of the data so that we can accurately tell the story in the data.

What we’ve seen in this particular data set tells a story of a subject growing in 

popularity, demonstrated by the increasing number of articles (in the stem plot) by a 

variety of authors (in the bar plot). Let’s now prepare it for mass consumption.

Note We are not fabricating or inventing this story. Like information 
archaeologists, we are sifting through the raw data to uncover the story.
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 Visualize Data
Once we’ve analyzed the data and understand it (and I mean really understand the data 

to the point where we are conversant in all the granular details around it), and once 

we’ve seen the story that the data has within, it is time to share that story.

For the current example, we’ve already crafted a stem and leaf plot as well as a bar 

chart as part of our analysis. However, stem and leaf plots are great for analyzing data, 

but not so great for messaging out about the findings. It is not immediately obvious 

what the context of the numbers in a stem and leaf plot represents. And the bar chart we 

created supported the main thesis of the story instead of communicating that thesis.

Since we want to demonstrate the distribution of articles by year, let’s instead use a 

histogram to tell the story:

hist(yearlist)

See Figure 1-18 for what this call to the hist() function generates.

Figure 1-18. Histogram of yearlist
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This is a good start, but let’s refine this further. Let’s color in the bars, give the chart a 

meaningful title, and strictly define the range of years:

hist(yearlist, breaks=(1981:2012), freq=TRUE, col="#CCCCCC", 

main="Distribution of Articles about Data Visualization\nby the NY Times", 

xlab = "Year")

This produces the histogram that we see in Figure 1-5.

 Ethics of Data Visualization
Remember Figure 1-3 from the beginning of this chapter where we looked at the 

weighted popularity of the search term “Data Visualization”? By constraining the data 

to 2006 to 2012, we told a story of a keyword growing in popularity, almost doubling 

in popularity over a six-year period. But what if we included more data points in our 

sample and extended our view to include 2004? See Figure 1-19 for this expanded time 

series chart.

This expanded chart tells a different story: one that describes a dip in popularity 

between 2005 and 2009. This expanded chart also demonstrates how easy it is to 

misrepresent the truth intentionally or unintentionally with data visualizations.

Figure 1-19. Google Trends time series chart with expanded time range. Note that 
the additional data points give a greater context and tell a different story
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 Cite Sources
When Playfair first published his Commercial and Political Atlas, one of the biggest 

biases he had to battle was the inherent distrust his peers had of charts to accurately 

represent data. He tried to overcome this by including data tables in the first two editions 

of the book.

Similarly, we should always include our sources when distributing our charts so 

that our audience can go back and independently verify the data if they want to. This 

is important because we are trying to share information, not hoard it, and we should 

encourage others to inspect the data for themselves and be excited about the results.

 Be Aware of Visual Cues
A side effect of using charts to function as visual shorthand is that we bring our own 

perspective and context to play when we view charts. We are used to certain things, such 

as the color red being used to signify danger or flagging for attention or the color green 

signifying safety. These color connotations are part of a branch of color theory called 

color harmony, and it’s worth at least being aware of what your color choices could be 

implying.

When in doubt, get a second opinion. When creating our graphics, we can often 

get married to a certain layout or chart choice. This is natural because we have spent 

time invested in analyzing and crafting the chart. A fresh, objective set of eyes should 

point out unintentional meanings or overly complex designs and make for a more crisp 

visualization.

 Summary
This chapter took a look at some introductory concepts about data visualization, 

from conducting data gathering and exploration to looking at the charts that make up 

the visual patterns that define how we communicate with data. We looked a little at 

the history of data visualization, from the early beginnings with William Playfair and 

Florence Nightingale to modern examples such as xkcd.com.

While we saw a little bit of code in this chapter, in the next chapter we start to dig in 

to the tactics of learning R and getting our hands dirty reading in data, shaping data, and 

crafting our own visualizations.
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CHAPTER 2

R Language Primer
In the last chapter, we defined what data visualizations are, looked at a little bit of the 

history of the medium, and explored the process for creating them. This chapter takes a 

deeper dive into one of the most important tools for creating data visualizations: R.

When creating data visualizations, R is an integral tool for both analyzing data and 

creating visualizations. We will use R extensively through the rest of this book, so we had 

better level set first.

R is both an environment and a language to run statistical computations and 

produce data graphics. It was created by Ross Ihaka and Robert Gentleman in 1993 

while at the University of Auckland. The R environment is the runtime environment 

that you develop and run R in. The R language is the programming language that you 

develop in.

R is the successor to the S language, a statistical programming language that came 

out of Bell Labs in 1976.

 Getting to Know the R Console
Let’s start by downloading and installing R. R is available from the R Foundation at 

www.r-project.org/. See Figure 2-1 for a screenshot of the R Foundation home page.

https://doi.org/10.1007/978-1-4842-7202-2_2#DOI
http://www.r-project.org/
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It is available as a precompiled binary from the Comprehensive R Archive Network 

(CRAN) website: http://cran.r-project.org/ (see Figure 2-2). We just select our 

operating system and what version of R we want, and we can begin to download.

Figure 2-1. Home page of the R Foundation
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Once the download is complete, we can run through the installer. See Figure 2-3 for a 

screenshot of the R installer for macOS.

Figure 2-2. The CRAN website
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Once we finish the installation, we can launch the R application, and we are 

presented with the R console, as shown in Figure 2-4.

Figure 2-3. R installation on a Mac
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 The Command Line
The R console is where the magic happens! It is a command-line environment where we 

can run R expressions. The best way to get up to speed in R is to script in the console, a 

piece at a time, generally to try out what you’re trying to do, and tweak it until you get the 

results that you want. When you finally have a working example, take the code that does 

what you want and save it as an R script file.

R script files are just files that contain pure R and can be run in the console using the 

source command:

> source("someRfile.R")

Figure 2-4. The R console
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Looking at the preceding code snippet, we assume that the R script lives in the 

current work directory. The way we can see what the current work directory is to use the 

getwd() function:

> getwd()

[1] "/Users/tomjbarker"

We can also set the working directory by using the setwd() function. Note that 

changes made to the working directory are not persisted across R sessions unless the 

session is saved.

> setwd("/Users/tomjbarker/Downloads")

> getwd()

[1] "/Users/tomjbarker/Downloads"

 Command History
The R console stores commands that you enter and you can cycle through previous 

commands by pressing the up arrow. Hit the escape button to return to the command 

prompt. We can see the history in a separate window pane by clicking the Show/Hide 

Command History button at the top of the console. The Show/Hide Command History 

button is the rectangle icon with alternating stripes of yellow and green. See Figure 2-5 

for the R console with the command history shown.
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 Accessing Documentation
To read the R documentation around a specific function or keyword, you simply type a 

question mark before the keyword:

> ?setwd

If you want to search the documentation for a specific word or phrase, you can type 

two question marks before the search query:

> ??"working directory"

This code launches a window that shows search results (see Figure 2-6). The search 

result window has a row for each topic that contains the search phrase and has the name 

of the help topic, the package that the functionality that the help topic talks about is in, 

and a short description for the help topic.

Figure 2-5. R console with command history shown
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 Packages
Speaking of packages, what are they, exactly? Packages are collections of functions, data 

sets, or objects that can be imported into the current session or workspace to extend 

what we can do in R. Anyone can make a package and distribute it.

To install a package, we simply type this:

install.packages([package name])

Figure 2-6. Help search results window
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For example, if we want to install the ggplot2 package—which is a widely used and 

very handy charting package—we simply type this into the console:

> install.packages("ggplot2")

We are immediately prompted to choose the mirror location that we want to use, 

usually the one closest to our current location. From there, the install begins. We can see 

the results in Figure 2-7.

The zipped up package is downloaded and exploded into our R installation.

Figure 2-7. Installing the ggplot2 package
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If we want to use a package that we have installed, we must first include it in our 

workspace. To do this, we use the library() function:

> library(ggplot2)

A list of packages available at the CRAN can be found here: http://cran.r-

project.org/web/packages/available_packages_by_name.html.

To see a list of packages already installed, we can simply call the library() function 

with no parameter (depending on your install and your environment, your list of 

packages may vary):

> library()

Packages in library '/Library/Frameworks/R.framework/Versions/2.15/

Resources/library':

barcode                         Barcode distribution plots

base                            The R Base Package

boot                             Bootstrap Functions (originally by Angelo 

Canty for S)

class                           Functions for Classification

cluster                         Cluster Analysis Extended Rousseeuw et al.

codetools                       Code Analysis Tools for R

colorspace                      Color Space Manipulation

compiler                        The R Compiler Package

datasets                        The R Datasets Package

dichromat                       Color schemes for dichromats

digest                           Create cryptographic hash digests of R 

objects

foreign                          Read Data Stored by Minitab, S, SAS, SPSS, 

Stata, Systat, dBase,

                               ...

ggplot2                          An implementation of the Grammar of 

Graphics

gpairs                          gpairs: The Generalized Pairs Plot

graphics                        The R Graphics Package

grDevices                        The R Graphics Devices and Support for 

Colours and Fonts

grid                            The Grid Graphics Package
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gtable                          Arrange grobs in tables

KernSmooth                       Functions for kernel smoothing for Wand & 

Jones (1995)

labeling                        Axis Labeling

lattice                         Lattice Graphics

mapdata                         Extra Map Databases

mapproj                         Map Projections

maps                            Draw Geographical Maps

 Importing Data
So now our environment is downloaded and installed, and we know how to install any 

packages that we may need. Now we can begin using R.

The first thing we’ll normally want to do is import your data. There are several ways 

to import data, but the most common way is to use the read() function, which has 

several flavors:

read.table("[file to read]")

read.csv(["file to read"])

To see this in action, let’s first create a text file named temptext.txt that is formatted 

like so:

134,432,435,313,11

403,200,500,404,33

77,321,90,2002,395

We can read this into a variable that we will name temptxt:

> temptxt <- read.table("temptext.txt")

Notice that as we are assigning value to this variable, we are not using an equal sign 

as the assignment operator. We are instead using an arrow <-. That is R’s assignment 

operator, although it does also support the equal sign if you are so inclined. But the 

standard is the arrow, and all examples that we will show in this book will use the arrow.
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If we print out the temptxt variable, we see that it is structured as follows:

> temptxt

                 V1

1 134,432,435,313,11

2 403,200,500,404,33

3 77,321,90,2002,395

We see that our variable is a table-like structure called a data frame, and R has 

assigned a column name (V1) and row IDs to our data structure. More on column names 

soon.

The read() function has a number of parameters that you can use to refine how the 

data is imported and formatted once it is imported.

 Using Headers
The header parameter tells R to treat the first line in the external file as containing 

header information. The first line then becomes the column names of the data frame.

For example, suppose we have a log file structured like this:

url, day, date, loadtime, bytes, httprequests, loadtime_repeatview

http://apress.com , Sun, 01 Jul 2012 14:01:28 +0000,7042,956680,73,3341

http://apress.com , Sun, 01 Jul 2012 14:01:31 +0000,6932,892902,76,3428

http://apress.com , Sun, 01 Jul 2012 14:01:33 +0000,4157,594908,38,1614

We can load it into a variable named wpo like so:

> wpo <- read.table("wpo.txt", header=TRUE, sep=",")

> wpo

  url  day date loadtime bytes httprequests loadtime_repeatview

 1. http://apress.com,Sun,1 Jul 2012 14:01:28 

+0000,7042,955550,73,3191

 2. http://apress.com,Sun,1 Jul 2012 14:01:31 

+0000,6932,892442,76,3728

 3. http://apress.com,Sun,1 Jul 2012 14:01:33 

+0000,4157,614908,38,1514
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When we call the colnames() function to see what the column names are for wpo,  

we see the following:

> colnames(wpo)

[1] "url"     "day"     "date"     "loadtime"

[5] "bytes"     "httprequests"     "loadtime_repeatview"

 Specifying a String Delimiter
The sep attribute tells the read() function what to use as the string delimiter for parsing 

the columns in the external data file. In all the examples we’ve looked at so far, commas 

are our delimiters (as we explicitly told R in the line that read in wpo), but we could use 

instead pipes | or any other character that we want.

Say, for example, that our previous temptxt example used pipes; we would just 

update the code to be as follows:

134|432|435|313|11

403|200|500|404|33

77|321|90|2002|395

> temptxt <- read.table("temptext.txt", sep="|")

> temptxt

  V1  V2  V3   V4  V5

 1. 134 432 435 313 11

 2. 403 200 500 404 33

 3. 77 321 90 2002 395

Oh, notice that? We actually got distinct column names this time (V1, V2, V3, V4, V5). 

Before, we didn’t specify a delimiter, so R assumed that each row was one big blob of text 

and lumped it into a single column (V1).

 Specifying Row Identifiers
The row.names attribute allows us to specify identifiers for our rows. By default, as we’ve 

seen in the previous examples, R uses incrementing numbers as row IDs. Keep in mind 

that the row names need to be unique for each row.
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With that in mind, let’s take a look at importing some different log data, which has 

performance metrics for unique URLs:

url, day, date, loadtime, bytes, httprequests, loadtime_repeatview

http://apress.com, Sun, 01 Jul 2012 14:01:28 +0000,7042,956680,73,3341

http://google.com, Sun, 01 Jul 2012 14:01:31 +0000,6932,892902,76,3428

http://apple.com, Sun, 01 Jul 2012 14:01:33 +0000,4157,594908,38,1614

When we read it in, we’ll be sure to specify that the data in the url column should be 

used as the row name for the data frame:

> wpo <- read.table("wpo.txt", header=TRUE, sep=",", row.names="url")

> wpo

                     day  date                          loadtime   bytes 

         httprequests  loadtime_repeatview

http://apress.com    Sun  01 Jul 2012 14:01:28  +0000   7042       956680 

         73            3341

http://google.com    Sun  01 Jul 2012 14:01:31  +0000   6932       892902 

         76            3428

http://apple.com     Sun  01 Jul 2012 14:01:33  +0000   4157       594908 

         38            31614

 Using Custom Column Names
And there we go. But what if we want to have column names, but the first line in our file 

is not header information? We can use the col.names parameter to specify a vector that 

we can use as column names.

Let’s take a look. In this example, we’ll use the pipe-separated text file used 

previously:

134|432|435|313|11

403|200|500|404|33

77|321|90|2002|395
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First, we’ll create a vector named columnNames that will hold the strings that we will 

use as the column names:

> columnNames <- c("resource_id", "dns_lookup", "cache_load", "file_size", 

"server_response")

Then, we’ll read in the data, passing in our vector to the col.names parameter:

> resource_log <- read.table("temptext.txt", sep="|", col.

names=columnNames)

> resource_log

 resource_id dns_lookup cache_load file_size server_response

1        134        432        435       313              11

2        403        200        500       404              33

3         77        321         90      2002             395

 Data Structures and Data Types
In the previous examples, we touched on a lot of concepts; we created variables, 

including vectors and data frames; but we didn’t talk much about what they are.  

Let’s take a step back and look at the data types that R supports and how to use them.

Data types in R are called modes and can be the following:

• Numeric

• Character

• Logical

• Complex

• Raw

• List

We can use the mode() function to check the mode of a variable.
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Character and numeric modes correspond to string and number (both integer and 

float) data types. Logical modes are Boolean values.

> n <- 122132

> mode(n)

[1] "numeric"

> c <- "test text"

> mode(c)

[1] "character"

> l <- TRUE

> mode(l)

[1] "logical"

We can perform string concatenation using the paste() function. We can use the 

substr() function to pull characters out of strings. Let’s look at some examples in code.

Usually, I keep a list of directories that I either read data from or write charts to. 

Then when I want to reference a new data file that exists in the data directory, I will just 

append the new file name to the data directory:

> dataDirectory <- "/Users/tomjbarker/org/data/"

> buglist <- paste(dataDirectory, "bugs.txt", sep="")

> buglist

[1] "/Users/tomjbarker/org/data/bugs.txt"

The paste() function takes N amount of strings and concatenates them together. It 

accepts an argument named sep that allows us to specify a string that we can use to be a 

delimiter between joined strings. We don’t want anything separating our joined strings 

that we pass in an empty string.

If we want to pull characters from a string, we use the substr() function. The 

substr() function takes a string to parse, a starting location, and a stopping location. It 

returns all the character inclusively from the starting location up to the ending location. 

(Remember that in R, lists are not 0 based like most other languages, but instead have a 

starting index of 1.)

> substr("test", 1,2)

[1] "te"
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In the preceding example, we pass in the string “test” and tell the substr() function 

to return the first and second characters.

Complex mode is for complex numbers. The raw mode is to store raw byte data.

List data types or modes can be one of three classes: vectors, matrices, or data 

frames. If we call mode() for vectors or matrices, they return the mode of the data that 

they contain; class() returns the class. If we call mode() on a data frame, it returns the 

type list.

> v <- c(1:10)

> mode(v)

[1] "numeric"

> m <- matrix(c(1:10), byrow=TRUE)

> mode(m)

[1] "numeric"

> class(m)

[1] "matrix" "array"

> d <- data.frame(c(1:10))

> mode(d)

[1] "list"

> class(d)

[1] "data.frame"

Note that we just typed 1:10 rather than the whole sequence of numbers between 1 

and 10:

v <- c(1:10)

Vectors are single-dimensional arrays that can hold only values of a single mode at 

a time. It’s when we get to data frames and matrices that R really starts to get interesting. 

The next two sections cover those classes.

 Data Frames
We saw at the beginning of this chapter that the read() function takes in external data 

and saves it as a data frame. Data frames are like arrays in most other loosely typed 

languages: they are containers that hold different types of data, referenced by index. The 

main thing to realize, though, is that data frames see the data that they contain as rows, 

columns, and combinations of the two.

Chapter 2  r Language primer



50

For example, think of a data frame as formatted as follows:

      col  col  col  col  col

row [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ]

row [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ]

row [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ]

row [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ]

If we try to reference the first index in the preceding data frame as we traditionally 

would with an array, say dataframe[1], R would instead return the first column of 

data, not the first item. So data frames are referenced by their column and row. So 

dataframe[1] returns the first column, and dataframe[,2] returns the first row.

Let’s demonstrate this in code.

First, let’s create some vectors using the combine function, c(). Remember that 

vectors are collections of data all of the same type. The combine function takes a series 

of values and combines them into vectors.

> col1 <- c(1,2,3,4,5,6,7,8)

> col2 <- c(1,2,3,4,5,6,7,8)

> col3 <- c(1,2,3,4,5,6,7,8)

> col4 <- c(1,2,3,4,5,6,7,8)

Then, let’s combine these vectors into a data frame:

> df <- data.frame(col1,col2,col3,col4)

Now let’s print the data frame to see the contents and the structure of it:

> df

    col1 col2 col3 col4

1    1    1    1    1

2    2    2    2    2

3    3    3    3    3

4    4    4    4    4

5    5    5    5    5

6    6    6    6    6

7    7    7    7    7

8    8    8    8    8
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Notice that it took each vector and made each one a column. Also notice that each 

row has an ID; by default, it is a number, but we can override that.

If we reference the first index, we see that the data frame returns the first column:

> df[1]

 col1

1    1

2    2

3    3

4    4

5    5

6    6

7    7

8    8

If we put a comma in front of that 1, we reference the first row:

> df[,1]

[1] 1 2 3 4 5 6 7 8

So accessing contents of a data frame is done by specifying [column, row].

Matrices work much the same way.

 Matrices
Matrices are just like data frames in that they contain rows and columns and can be 

referenced by either. The core difference between the two is that data frames can hold 

different data types, but matrices can hold only one type of data.

This presents a philosophical difference. Usually, you use data frames to hold data 

read in externally, like from a flat file or a database because those are generally of mixed 

type. You normally store data in matrices that you want to apply functions to (more on 

applying functions to lists in a little bit).
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To create a matrix, we must use the matrix() function, pass in a vector, and tell the 

function how to distribute the vector:

• The nrow parameter specifies how many rows the matrix should have.

• The ncol parameter specifies the number of columns.

• The byrow parameter tells R that the contents of the vector should be 

distributed by iterating across rows if TRUE or by columns if FALSE.

> content <- c(1,2,3,4,5,6,7,8,9,10)

> m1 <- matrix(content, nrow=2, ncol=5, byrow=TRUE)

> m1

    [,1] [,2] [,3] [,4] [,5]

[1,]    1    2    3    4    5

[2,]    6    7    8    9   10

>

Notice that in the previous example the m1 matrix is filled in horizontally, row by row. 

In the following example, the m1 matrix is filled in vertically by column:

> content <- c(1,2,3,4,5,6,7,8,9,10)

> m1 <- matrix(content, nrow=2, ncol=5, byrow=FALSE)

> m1

    [,1] [,2] [,3] [,4] [,5]

[1,]    1    3    5    7    9

[2,]    2    4    6    8   10

Remember that instead of manually typing out all the numbers in the previous 

content vector, if the numbers are a sequence, we can just type this:

content <- (1:10)

We reference the content in matrices with the square bracket, specifying the row and 

column, respectively:

> m1[1,4]

[1] 7
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We can convert a data frame to a matrix if the data frame contains only a single type 

of data. To do this, we use the as.matrix() function. Oftentimes, we will do this when 

passing a data frame to a plotting function to draw a chart.

> barplot(as.matrix(df))

In the following, we create a data frame called df. We populate the data frame with 

ten consecutive numbers. We then use as.matrix() to convert df into a matrix and save 

the result into a new variable called m.

> df <- data.frame(1:10)

> df

  X1.10

1      1

2      2

3      3

4      4

5      5

6      6

7      7

8      8

9      9

10     10

> class(df)

[1] "data.frame"

> m <- as.matrix(df)

> class(m)

[1] "matrix" "array"

Keep in mind that because they are all the same data type, matrices require less 

overhead and are intrinsically more efficient than data frames. If we compare the size 

of our matrix m and our data frame df, we see that with just ten items, there is a size 

difference.

> object.size(m)

552 bytes

> object.size(df)

776 bytes
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With that said, if we increase the scale of this, the increase in efficiency does not 

equally scale. Compare the following:

> big_df <- data.frame(1:40000000)

> big_m <- matrix(1:40000000)

> object.size(big_m)

160000216 bytes

> object.size(big_df)

160000736 bytes

We can see that the first example with the small data set showed that the matrix 

was 30 percent smaller in size than the data frame, but at the larger scale in the second 

example, the matrix was only .00018 percent smaller than the data frame.

 Adding Lists
When combining or adding to data frames or matrices, you generally add either by the 

row or the column using rbind() or cbind().

To demonstrate this, let’s add a new row to our data frame df. We’ll pass df into 

rbind() along with the new row to add to df. The new row contains just one element, the 

number 11.

> df <- rbind(df, 11)

> df

  X1.10

1      1

2      2

3      3

4      4

5      5

6      6

7      7

8      8

9      9

10     10

11     11
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Now let’s add a new column to our matrix m. To do this, we simply pass m into 

cbind() as the first parameter; the second parameter is a new matrix that will be 

appended to the new column.

> m <- rbind(m, 11)

> m <- cbind(m, matrix(c(50:60), byrow=FALSE))

> m

     X1.10

[1,]     1  50

[2,]     2  51

[3,]     3  52

[4,]     4  53

[5,]     5  54

[6,]     6  55

[7,]     7  56

[8,]     8  57

[9,]     9  58

[10,]    10 59

[11,]    11 60

What about vectors, you may ask? Well, let’s look at adding to our content vector.  

We simply use the combine function to combine the current vector with a new vector:

> content <- c(1,2,3,4,5,6,7,8,9,10)

> content <- c(content, c(11:20))

> content

[1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

 Looping Through Lists
As developers who generally work in procedural languages, or at least came up the 

ranks using procedural languages (though, in recent years, functional programming 

paradigms have become much more mainstream), we’re most likely used to looping 

through our arrays when we want to process the data within them. This is in contrast to 

purely functional languages where we would instead apply a function to our lists, like 

the map() function. R supports both paradigms. Let’s first look at how to loop through 

our lists.

Chapter 2  r Language primer



56

The most useful loop that R supports is the for in loop. The basic structure of a for 

in loop can be seen here:

> for(i in 1:5){print(i)}

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

The variable i increments in value each step through the iteration. We can use the 

for in loop to step through lists. We can specify a particular column to iterate through, 

like the following, in which we loop through the X1.10 column of the data frame df.

> for(n in df$X1.10){ print(n)}

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

[1] 8

[1] 9

[1] 10

[1] 11

Note that we are accessing the columns of data frames via the dollar sign operator. 

The general pattern is [data frame]$[column name].

 Applying Functions to Lists
But the way that R really wants to be used is to apply functions to the contents of lists 

(see Figure 2-8).
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We do this in R with the apply() function.

The apply() function takes several parameters:

• First is our list.

• Next, a number vector to indicate how we apply the function through 

the list (1 is for rows, 2 is for columns, and c[1,2] indicates both rows 

and columns).

• Last is the function to apply to the list:

apply([list], [how to apply function], [function to apply])

Let’s look at an example. Let’s make a new matrix that we’ll call m. The matrix m will 

have ten columns and four rows:

> m <- matrix(c(1:40), byrow=FALSE, ncol=10)

> m

    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,]    1    5    9   13   17   21   25   29   33    37

[2,]    2    6   10   14   18   22   26   30   34    38

[3,]    3    7   11   15   19   23   27   31   35    39

[4,]    4    8   12   16   20   24   28   32   36    40

Figure 2-8. Apply a function to list elements
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Now say we wanted to increment every number in the m matrix. We could simply use 

apply() as follows:

> apply(m, 2, function(x) x <- x + 1)

    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,]    2    6   10   14   18   22   26   30   34    38

[2,]    3    7   11   15   19   23   27   31   35    39

[3,]    4    8   12   16   20   24   28   32   36    40

[4,]    5    9   13   17   21   25   29   33   37    41

Do you see what we did there? We passed in m, we specified that we wanted to apply 

the function across the columns, and finally we passed in an anonymous function. The 

function accepts a parameter that we called x. The parameter x is a reference to the 

current matrix element. From there, we just increment the value of x by 1.

OK, say we wanted to do something slightly more interesting, such as zeroing out all 

the even numbers in the matrix. We could do the following:

> apply(m,c(1,2),function(x){if((x %% 2) == 0) x <- 0 else x <- x})

    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,]    1    5    9   13   17   21   25   29   33    37

[2,]    0    0    0    0    0    0    0    0    0     0

[3,]    3    7   11   15   19   23   27   31   35    39

[4,]    0    0    0    0    0    0    0    0    0     0

For the sake of clarity, let’s break out that function that we are applying. We simply 

check to see whether the current element is even by checking to see whether it has a 

remainder when divided by two. If it is, we set it to zero; if it isn’t, we set it to itself:

function(x){

    if((x %% 2) == 0)

         x <- 0

    else

         x <- x

}
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 Functions
Speaking of functions, the syntax for creating functions in R is much like most other 

languages. We use the function keyword, give the function a name, have open and 

closed parentheses where we specify arguments, and wrap the body of the function in 

curly braces:

function [function name]([argument])

{

    [body of function]

}

Something interesting that R allows is the ... argument (sometimes called the dots 

argument). This allows us to pass in a variable number of parameters into a function. 

Within the function, we can convert the ... argument into a list and iterate over the list 

to retrieve the values within:

> offset <- function (...){

    for(i in list(...)){

         print(i)

    }

}

> offset(23,11)

[1] 23

[1] 11

We can even store values of different data types (modes) in the ... argument:

> offset("test value", 12, 100, "19ANM")

[1] "test value"

[1] 12

[1] 100

[1] "19ANM"

R uses lexical scoping. This means that when we call a function and try to reference 

variables that are not defined inside the local scope of the function, the R interpreter 

looks for those variables in the workspace or scope in which the function was created. If 

the R interpreter cannot find those variables in that scope, it looks in the parent of that 

scope.
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If we create a function A within function B, the creation scope of function A is 

function B. For example, see the following code snippet:

> x <- 10

> wrapper <- function(y){

     x <- 99

     c<- function(y){

          print(x + y)

     }

     return(c)

}

> t <- wrapper()

> t(1)

[1] 100

> x

[1] 10

We created a variable x in the global space and gave it a value of 10. We created 

a function, named it wrapper, and had it accept an argument named y. Within the 

wrapper() function, we created another variable named x and gave it a value of 99. We 

also created a function named c. The function wrapper() passes the argument y into 

the function c(), and the c() function outputs the value of x added to y. Finally, the 

wrapper() function returns the c() function.

We created a variable t and set it to the returned value of the wrapper() function, 

which is the function c(). When we run the t() function and pass in a value of 1, we see 

that it outputs 100 because it is referencing the variable x from the function wrapper().

Being able to reach into the scope of a function that has executed is called a closure.

But, you may ask, how can we be sure that we are executing the returned function 

and not rerunning wrapper() each time? R has a very nice feature where if you type in 

the name of a function without the parentheses, the interpreter will output the body of 

the function.
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When we do this, we are in fact referencing the returned function and using a closure 

to reference the x variable:

> t

function(y){

         print(x + y)

    }

<environment: 0x17f1d4c4>

 Summary
In this chapter, we downloaded and installed R. We explored the command line, went 

over data types, and got up and running importing into the R environment data for 

analysis. We looked at lists, how to create them, add to them, loop through them, and to 

apply functions to elements in a list.

We looked at functions, talked about lexical scope, and saw how to create 

closures in R.

Next chapter, we’ll take a deeper dive into R, look at objects, get our feet wet with 

statistical analysis in R, and explore creating R Markdown documents for distribution 

over the Web.
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CHAPTER 3

A Deeper Dive into R
The last chapter explored some introductory concepts in R, from using the console to 

importing data. We installed packages and discussed data types, including different list 

types. We finished up by talking about functions and creating closures.

This chapter will look at object-oriented concepts in R, explore concepts in statistical 

analysis, and finally see how R can be incorporated into R Markdown for real-time 

distribution.

 Object-Oriented Programming in R
R supports two different systems for creating objects: the S3 and S4 methods. S3 is the 

default way that objects are handled in R. We’ve been using and making S3 objects with 

everything that we’ve done so far. S4 is a newer way to create objects in R that has more 

built-in validation, but more overhead. Let’s take a look at both methods.

OK, so traditional, class-based, object-oriented design is characterized by creating 

classes that are the blueprint for instantiated objects (see Figure 3-1).

Figure 3-1. The matrix class is used to create the variables m1 and m2, both 
matrices
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At a very high level, in traditional object-oriented languages, classes can extend other 

classes to inherit the parent class’ behavior, and classes can also implement interfaces, 

which are contracts defining what the public signature of the object should be. See 

Figure 3-2 for an example of this, in which we create an IUser interface that describes 

what the public interface should be for any user type class, and a BaseUser class that 

implements the interface and provides a base functionality. In some languages, we 

might make BaseUser an abstract class, a class that can be extended but not directly 

instantiated. The User and SuperUser classes extend BaseClass and customize the 

existing functionality for their own purposes.

There also exists the concept of polymorphism, in which we can change functionality 

via the inheritance chain. Specifically, we would inherit a function from a base class but 

override it, keep the signature (the function name, the type and amount of parameters 

it accepts, and the type of data that it returns) the same, but change what the function 

does. Compare overriding a function to the contrasting concept of overloading a 

function, in which the function would have the same name but a different signature and 

functionality.

 S3 Classes
S3, so called because it was first implemented in version 3 of the S language, uses a 

concept called generic functions. Everything in R is an object, and each object has 

a string property called class that signifies what the object is. There is no validation 

Figure 3-2. An IUser interface implemented by a superclass BaseUser that the 
subclasses User and SuperUser extend
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around it, and we can overwrite the class property ad hoc. That’s the main problem 

with S3—the lack of validation. If you ever had an esoteric error message returned when 

trying to use a function, you probably experienced the repercussions of this lack of 

validation firsthand. The error message was probably generated not from R detecting 

that an incorrect type had been passed in, but from the function trying to execute with 

what was passed in and failing at some step along the way.

See the following code, in which we create a matrix and change its class to be a 

vector:

> m <- matrix(c(1:10), nrow=2)

> m

   [,1] [,2] [,3] [,4] [,5]

[1,]    1    3    5    7    9

[2,]    2    4    6    8   10

> class(m) <- "vector"

> m

   [,1] [,2] [,3] [,4] [,5]

[1,]    1    3    5    7    9

[2,]    2    4    6    8   10

attr(,"class")

[1] "vector"

Generic functions are objects that check the class property of objects passed into 

them and exhibit different behavior based on that attribute. It’s a nice way to implement 

polymorphism. We can see the methods that a generic function uses by passing the 

generic function to the methods() function. The following code shows the methods of 

the plot() generic function:

> methods(plot)

[1] plot.acf*            plot.data.frame*    plot.decomposed.ts* 

        plot.default        plot.dendrogram*

[6] plot.density         plot.ecdf           plot.factor* 

        plot.formula*       plot.function

[11] plot.hclust*        plot.histogram*     plot.HoltWinters*   

        plot.isoreg*        plot.lm

[16] plot.medpolish*     plot.mlm            plot.ppr*           

        plot.prcomp*        plot.princomp*
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[21] plot.profile.nls*   plot.spec           plot.stepfun        

        plot.stl*           plot.table*

[26] plot.ts             plot.tskernel*      plot.TukeyHSD

Non-visible functions are asterisked

Notice that within the generic plot() function is a myriad of methods to handle all 

the different types of data that could be passed to it, such as plot.data.frame for when 

we pass a data frame to plot(); or if we want to plot a TukeyHSD object plot(), plot.

TukeyHSD is ready for us.

Note type ?TukeyHSD for more information on this object.

Now that you know how S3 object-oriented concepts work in R, let’s see how to 

create our own custom S3 objects and generic functions.

An S3 class is a list of properties and functions with an attribute named class. The 

class attribute tells generic functions how to treat objects that implement a particular 

class. Let’s create an example using the UserClass idea from Figure 3-2:

> tom <- list(userid = "tbarker", password = "password123", 

playlist=c(12,332,45))

> class(tom) <- "user"

We can inspect our new object by using the attributes() function, which tells us 

the properties that the object has as well as its class:

> attributes(tom)

$names

[1] "userid"   "password" "playlist"

$class

[1] "user"
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Now to create generic functions that we can use with our new class, start by creating 

a function that will handle only our user object; then generalize it so any class can use it. 

It will be the createPlaylist() function, and it will accept the user on which to perform 

the operation and a playlist to set. The syntax for this is [ function name ].[ class 

name ]. Note that we access the properties of S3 objects using the dollar sign.

>createPlaylist.user <- function(user, playlist=NULL){

    user$playlist <- playlist

    return(user)

}

Note that while you type directly into the console, R enables you to span several lines 

without executing your input until you complete an expression. After your expression is 

complete, it will be interpreted. If you want to execute several expressions at once, you 

can copy and paste into the command line.

Let’s test it to make sure it works as desired. It should set the playlist property of 

the passed-in object to the vector that is passed in:

> tom <- createPlaylist.user(tom, c(11,12))

> tom

$userid

[1] "tbarker"

$password

[1] "password123"

$playlist

[1] 11 12

attr(,"class")

[1] "user"

Excellent! Now let’s generalize the createPlaylist() function to be a generic 

function. To do this, we just create a function named createPlaylist and have it accept 

an object and a value. Within our function, we use the UseMethod() function to delegate 

functionality to our class-specific createPlaylist() function: createPlaylist.user.
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The UseMethod() function is the core of generic functions: it evaluates the object, 

determines its class, and dispatches to the correct class-specific function:

> createPlaylist <- function(object, value)

{

      UseMethod("createPlaylist", object)

}

Now let’s try it out to see whether it worked:

> tom <- createPlaylist(tom, c(21,31))

> tom

$userid

[1] "tbarker"

$password

[1] "password123"

$playlist

[1] 21 31

attr(,"class")

[1] "user"

Excellent!

 S4 Classes
Let’s look at S4 objects. Remember that the main complaint about S3 is the lack of 

validation. S4 addresses this lack by having overhead built into the class structure. Let’s 

take a look.

First, we’ll create the user class. We do this with the setClass() function.

• The first parameter in the setClass() function is a string that 

signifies the name of the class that we are creating.

• The next parameter is called representation, and it is a list of named 

properties.
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setClass("user",

representation(userid="character",

    password="character",

    playlist="vector"

)

)

We can test it by creating a new object from this class. We use the new() function to 

create a new instance of the class:

> lynn <- new("user", userid="lynn", password="test", playlist=c(1,2))

> lynn

An object of class "user"

Slot "userid":

[1] "lynn"

Slot "password":

[1] "test"

Slot "playlist":

[1] 1 2

Very nice. Note that for S4 objects, we use the @ symbol to reference properties of 

objects:

> lynn@playlist

[1] 1 2

> class(lynn)

[1] "user"

attr(,"package")

[1] ".GlobalEnv

Let’s create a generic function for this class by using the setMethod() function. We 

simply pass in the function name, the class name, and then an anonymous function that 

will serve as the generic function:

> setMethod("createPlaylist", "user", function(object, value){

      object@playlist <- value

      return(object)

 })
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Creating a generic function from function 'createPlaylist' in the global 

environment

[1] "createPlaylist"

>

Let’s try it out:

> lynn <- createPlaylist(lynn, c(1001, 400))

> lynn

An object of class "user"

Slot "userid":

[1] "lynn"

Slot "password":

[1] "test"

Slot "playlist":

[1] 1001  400

Excellent!

Although some prefer the simplicity and flexibility of the S3 way, some prefer the 

structure of the S4 method; the choice of S3 or S4 objects is purely one of personal 

preference. My own preference is for the simplicity of S3, and that is what we will be 

using for the remainder of the book. Google, in its R Style Guide available at https://

google.github.io/styleguide/Rguide.html, mirrors my own feelings about S3, 

saying “Use S3 objects and methods unless there is a strong reason to use S4 objects or 

methods.”

 Statistical Analysis with Descriptive Metrics in R
Now let’s take a look at some concepts in statistical analysis and how to implement 

them in R. You might remember most of the concepts covered in this chapter from an 

introductory statistics class from college; they are the base concepts needed to begin to 

think about and discuss your data.

First, let’s get some data on which we’ll perform statistical analysis. R comes 

preloaded with a number of data sets that we can use as sample data. To see a list 

of available data sets with your install, simply type data() at the console. You’ll be 

presented with the screen that you see in Figure 3-3.
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To see the contents of a data set, you can call it by name in the console. Let’s take a 

look at the USArrests data set, which we’ll use for the next few topics.

> USArrests

                Murder  Assault   UrbanPop Rape

Alabama          13.2    236       58      21.2

Alaska           10.0    263       48      44.5

Arizona           8.1    294       80      31.0

Arkansas          8.8    190       50      19.5

California        9.0    276       91      40.6

Colorado          7.9    204       78      38.7

Figure 3-3. Available data sets in R
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Connecticut       3.3     110       77     11.1

Delaware          5.9     238       72     15.8

Florida          15.4     335       80     31.9

Georgia          17.4     211       60     25.8

Hawaii            5.3      46       83     20.2

Idaho             2.6     120       54     14.2

Illinois         10.4     249       83     24.0

Indiana           7.2     113       65     21.0

Iowa              2.2      56       57     11.3

Kansas            6.0     115       66     18.0

Kentucky          9.7     109       52     16.3

Louisiana        15.4     249       66     22.2

Maine             2.1      83       51      7.8

Maryland         11.3     300       67     27.8

Massachusetts     4.4     149       85     16.3

Michigan         12.1     255       74     35.1

Minnesota         2.7      72       66     14.9

Mississippi      16.1     259       44     17.1

Missouri          9.0     178       70     28.2

Montana           6.0     109       53     16.4

Nebraska          4.3     102       62     16.5

Nevada           12.2     252       81     46.0

New Hampshire     2.1      57       56      9.5

New Jersey        7.4     159       89     18.8

New Mexico       11.4     285       70     32.1

New York         11.1     254       86     26.1

North Carolina   13.0     337       45     16.1

North Dakota      0.8      45       44      7.3

Ohio              7.3     120       75     21.4

Oklahoma          6.6     151       68     20.0

Oregon            4.9     159       67     29.3

Pennsylvania      6.3     106       72     14.9

Rhode Island      3.4     174       87      8.3

South Carolina   14.4     279       48     22.5

South Dakota      3.8      86       45     12.8
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Tennessee        13.2     188       59     26.9

Texas            12.7     201       80     25.5

Utah              3.2     120       80     22.9

Vermont           2.2      48       32     11.2

Virginia          8.5     156       63     20.7

Washington        4.0     145       73     26.2

West Virginia     5.7      81       39      9.3

Wisconsin         2.6      53       66     10.8

Wyoming           6.8     161       60     15.6

>

The first function in R that we’ll look at is the summary() function, which accepts an 

object and returns the following key descriptive metrics, grouped by column:

• Minimum value

• Maximum value

• Median for numbers and frequency for strings

• Mean

• First quartile

• Third quartile

Let’s run the USArrests data set through the summary() function:

> summary(USArrests)

   Murder          Assault         UrbanPop          Rape

Min.   : 0.800   Min.   : 45.0   Min.   :32.00   Min.   : 7.30

1st Qu.: 4.075   1st Qu.:109.0   1st Qu.:54.50   1st Qu.:15.07

Median : 7.250   Median :159.0   Median :66.00   Median :20.10

Mean   : 7.788   Mean   :170.8   Mean   :65.54   Mean   :21.23

3rd Qu.:11.250   3rd Qu.:249.0   3rd Qu.:77.75   3rd Qu.:26.18

Max.   :17.400   Max.   :337.0   Max.   :91.00   Max.   :46.00

Let’s look at each of these metrics in detail, as well as the standard deviation.
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 Median and Mean
Note that the median is the number that is the middle value in a data set, quite literally 

the number that has the same amount of numbers greater and less than itself in the data 

set. If our data set looks like the following, the median is 3:

1, 2, 3, 4, 5

But notice that it’s easy to find the median when there are an odd number of items in 

a data set. Suppose that there is an even number of items in a data set, as follows:

1, 2, 3, 4, 5, 6

In this case, we take the middle pair, 3 and 4, and get the average of those two 

numbers. The median is 3.5.

Why does the median matter? When you look at a data set, there are usually outliers 

at either end of the spectrum, values that are much higher or much lower than the rest 

of the data set. Gathering the median value excludes these outliers, giving a much more 

realistic view of the average values.

Contrast this idea with the mean, which is simply the sum of the values in a data 

set divided by the number of items. The values include the outliers, so the mean can be 

skewed by having significant outliers and really represent the full data set.

For example, look at the following data set:

1, 2, 3, 4, 30

The median is still 3 for this data set, but the mean is 8, because of this:

median = [1,2] 3 [4,30]
mean =  1 + 2 + 3 + 4 + 30 = 40
    40 / 5 = 8

 Quartiles
The median is the center of the data set, which means that the median is the second 

quartile. Quartiles are the points that divide a data set into four even sections. We can 

use the quantile() function to pull just the quartiles from our data set.

> quantile(USArrests$Murder)
  0%    25%    50%    75%   100%
0.800  4.075  7.250 11.250 17.400
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The summary() function simply returns the quartiles, as well as the minimum, 

maximum, and mean values. Here are the summary() results for comparison, with the 

previous quartiles highlighted:

> summary(USArrests)

   Murder          Assault         UrbanPop          Rape

Min.   : 0.800   Min.   : 45.0   Min.   :32.00   Min.   : 7.30

1st Qu.: 4.075   1st Qu.:109.0   1st Qu.:54.50   1st Qu.:15.07

Median : 7.250   Median :159.0   Median :66.00   Median :20.10

Mean   : 7.788   Mean   :170.8   Mean   :65.54   Mean   :21.23

3rd Qu.:11.250   3rd Qu.:249.0   3rd Qu.:77.75   3rd Qu.:26.18

Max.   :17.400   Max.   :337.0   Max.   :91.00   Max.   :46.00

 Standard Deviation
Speaking of the idea of the mean, there is also the idea that data has a normal 

distribution or that data is normally densely clustered around the mean with lighter 

groupings above and below the mean. This is usually demonstrated with a bell curve, in 

which the mean is the top of the curve and the outliers are distributed on either end of it 

(see Figure 3-4).

Figure 3-4. The bell curve of a normal distribution
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Standard deviation is a unit of measurement that describes the average of how far 

apart the data is distributed from the mean, so we can detail how far each data point is 

from the mean in terms of standard deviations.

In R, we can determine the standard deviation using the sd() function. The sd() 

function expects a vector of numeric values:

> sd(USArrests$Murder)

[1] 4.35551

If we want to gather the standard deviation for a matrix, we can use the sapply() 

function to apply the sd() function, like so:

> sapply(USArrests, sd)

  Murder    Assault   UrbanPop       Rape murderRank

4.355510  83.337661  14.474763   9.366385  14.574930

 RStudio IDE
If you prefer to develop in an integrated development environment (IDE) instead of at 

the command line, you can use a free product called RStudio IDE. The RStudio IDE is 

made by the RStudio company and is much more than just an IDE (as you will soon see). 

The RStudio company was founded by JJ Allaire, creator of ColdFusion. RStudio IDE is 

available for download at www.rstudio.com/ide/ (see Figure 3-5 for a screenshot of the 

download page).
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Note You should install the rStudio iDe now because you will use it in the 
remainder of this chapter.

After installation, the IDE is split into four panes (see Figure 3-6).

Figure 3-5. RStudio IDE home page

Chapter 3  a Deeper Dive into r



78

The upper-left pane is the R script file in which we edit our R source code. The 

bottom-left pane is the R command line. The upper-right side pane holds the command 

history as well as all the objects in our current workspace. The bottom-right pane is split 

into tabs that can show the following:

• Contents of the file system for the current working directory

• Plots or charts that have been generated

• Current packages installed

• R help pages

Although it is great to have everything that you need in one place, here is where 

things become really interesting.

 R Markdown
In version 0.96 of RStudio, the team announced support for R Markdown using the knitr 

package. We can now embed R code into markdown documents that can get interpreted 

by knitr into HTML (HyperText Markup Language). But it gets even better.

Figure 3-6. RStudio Interface
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The RStudio company also makes a product called RPubs that allows users to create 

accounts and host their R Markdown files for distribution over the Web.

Note Markdown is a plain text markup language created by John Gruber and 
aaron Swartz. in markdown, you can use simple and lightweight text encodings to 
signify formatting. the markdown document is read and interpreted and an htML 
file is output.

A quick overview of markdown syntax follows:

header 1

=========

header 2

--------------

###header 3

####header 4

*italic*

**bold**

[link text]([URL])

![alt text]([path to image])

The great thing about R Markdown is that we can embed R code within our 

markdown document. We embed R using three tick marks and the letter r in curly 

braces:

```{r}

[R code]

```

We need three things to begin creating R Markdown (.rmd) documents:

• R

• R Studio IDE version 0.96 or higher

• The knitr package

The knitr package is used to reformat R into several different output formats, 

including HTML, markdown, or even plain text.
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Note information about the knitr package is available at  http://yihui.name/
knitr/.

Because you already have R and RStudio IDE installed, you will first install knitr. R 

Studio IDE has a nice interface to install packages: simply go to the Tools file menu, and 

click Install Packages. You should see the pop-up that is shown in Figure 3-7, in which 

you can specify the package name (R Studio IDE has a nice type ahead here for package 

discovery) and what library to install to.

After knitr is installed, you need to close and relaunch RStudio IDE. You then go to 

the File menu, and choose File ➤ New, in which you should see a number of options, 

including R Markdown. If you choose R Markdown, and choose the default option of 

“Document” and “HTML” as the Default Output Format, you get a new file with the 

template shown in Figure 3-8.

Figure 3-7. Installing the knitr package
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The R Markdown template has the following code:

---

title: "Untitled"

output: html_document

---

```{r setup, include=FALSE}

knitr::opts_chunk$set(echo = TRUE)

```

## R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for 

authoring HTML, PDF, and MS Word documents. For more details on using R 

Markdown, see <http://rmarkdown.rstudio.com>.

Figure 3-8. RStudio IDE
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When you click the **Knit** button, a document will be generated that 

includes both content and the output of any embedded R code chunks within 

the document. You can embed an R code chunk like this:

```{r cars}

summary(cars)

```

## Including Plots

You can also embed plots, for example:

```{r pressure, echo=FALSE}

plot(pressure)

```

Note that the `echo = FALSE` parameter was added to the code chunk to 

prevent printing of the R code that generated the plot.

This is the template, and when you click the Knit button, you will see the output 

shown in Figure 3-9.

Figure 3-9. HTML output of RMarkdown template
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Did you notice the Publish button at the top of Figure 3-9? That is how we push our R 

Markdown file to RPubs for hosting and distribution over the Web.

 RPubs
RPubs is a free web publishing platform for R Markdown files, provided by RStudio (the 

company). You can create a free account by visiting www.rpubs.com. Figure 3-10 shows a 

screenshot of the RPubs home page.

Just click the Register button, and fill out the form to create your free account. 

RPubs is fantastic; it’s a platform in which we can post our R Markdown documents for 

distribution.

Figure 3-10. RPubs home page
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Caution Be aware that every file you put up on rpubs is publicly available, so be 
sure not to put any sensitive or proprietary information in it. if you don’t want to put 
your r Markdown files where they are available for the whole world to see, you can 
instead click the Save as button right next to the publish button to save the file as 
regular htML.

After you click the Publish button, you are prompted to log in with your RPubs 

account. After logging in, you will be directed to the Document Details page, as seen in 

Figure 3-11.

After filling out the document details, a title for your document, and a description, 

you will be directed to your document hosted in RPubs. See Figure 3-12 for the 

template from Figure 3-9 hosted in RPubs and available publicly here: www.rpubs.com/

tomjbarker/3370.

Figure 3-11. Publishing to RPubs
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This is a powerful distribution method for R documents and for communicating 

data visualizations. In the coming chapters, we will put all the completed R charts up on 

RPubs for public consumption.

 Summary
This chapter explored some deeper concepts in R, from the different models of object- 

oriented design available to how to do statistical analysis with R. We even looked at 

how to use RMarkdown and RPubs to make data visualizations in R available for public 

distribution.

In the next chapter, we will look at D3, a JavaScript library that enables us to analyze 

and visualize data within the browser and add interactivity to visualizations.

Figure 3-12. RMarkdown template published to RPubs

Chapter 3  a Deeper Dive into r



87
© Tom Barker, Jon Westfall 2022 
T. Barker and J. Westfall, Pro Data Visualization Using R and JavaScript,  
https://doi.org/10.1007/978-1-4842-7202-2_4

CHAPTER 4

Data Visualization with D3
Thus far, when we have been talking about technologies used to create data 

visualizations, we’ve been talking about R. We’ve spent the last two chapters exploring 

the R environment and learning about the command line. We covered introductory 

topics in the R language, ranging from data types, functions, and object-oriented 

programming. We even talked about how to publish our R documents to the Web 

using RPubs.

This chapter we will look at a JavaScript library called D3 that is used to create 

interactive data visualizations. First is a very quick primer on HTML, CSS, and JavaScript, 

the supporting languages of D3, to level set. Then we’ll dig into D3 and explore how to 

make some of the more commonly used charts in D3.

 Preliminary Concepts
D3 is a JavaScript library. Specifically, that means it is written in JavaScript and 

embedded in an HTML page. We can reference the objects and functions in D3 in our 

own JavaScript code. So let’s start at the beginning. The purpose of the next section is not 

to take a deep dive into HTML CSS and JavaScript; there are plenty of other resources for 

that, including Foundation Website Creation that I helped to co-write. The purpose is to 

have a very high-level recap of concepts that we will deal with directly with D3. If you are 

already familiar with HTML, CSS, and JavaScript, you can skip down to the “History of 

D3” section of this chapter.

https://doi.org/10.1007/978-1-4842-7202-2_4#DOI
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 HTML
HTML is a markup language; in fact, it stands for HyperText Markup Language. It is a 

presentation language, made up of elements that signify formatting and layout. Elements 

contain attributes that have values that specify details about the element, tags, and 

content. To explain, let’s look at our basic HTML skeletal structure that we will use for 

most of our examples in this chapter:

<!DOCTYPE html>

<html>

<head></head>

<body></body>

</html>

Let’s start at the first line. That is the doctype that tells the browser’s render engine 

what rule set to use. Browsers can support multiple versions of HTML, and each version 

has a slightly different rule set. The doctype specified here is the HTML5 doctype. 

Another example of a doctype is this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN""  http://www.w3.org/TR/

xhtml11/DTD/xhtml11.dtd  ">

This is the doctype for XHTML 1.1. Notice that it specifies the URL of the document 

type definition (.dtd). If we were to read the plain text at the URL, we would see that it is 

a specification for how to parse HTML tags. The W3C maintains a list of doctypes here: 

www.w3.org/QA/2002/04/valid- dtd- list.html.

MODERN BROWSER ARCHITECTURE

Modern browsers are composed of modular pieces that encapsulate very specific functionality. 

These modules can also be licensed out and embedded in other applications:

• They have a UI layer that handles drawing the user interface of the browser, like 

the window, the status bar, and the back button.

• They have render engines to parse, tokenize, and paint the HTML.
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• They have a network layer to handle the network operations involved in 

retrieving the HTML and all the assets on the page.

• They have a Javascript engine to interpret and execute the Javascript in  

the page.

see Figure 4-1 for a representation of this architecture.

Back to the skeletal HTML structure. The next line is the <html> tag; this is the 

root- level tag for the document and holds every other HTML element that we will use. 

Notice that there is a closing tag on the last line of the document.

Next is the <head> tag, which is a container that generally holds information that 

is not displayed on the page (e.g., the title and meta-information). After the <head> tag 

is the <body> tag, which is a container that holds all the HTML elements that will be 

displayed on the page, for example, paragraphs:

<p> this is a paragraph </p>

or links:

<a href="[URL]">link text or image here</a>

Figure 4-1. Modern Browser Architecture
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or images:

<img src="[URL]"/>

When it comes to D3, most of the JavaScript that we will be writing will be in the 

body section, and most of the CSS will be in the head section.

 CSS
CSS stands for Cascading Style Sheets and is what is used to style the HTML elements 

on a web page. Style sheets are either contained in <style> tags or linked externally via 

<link> tags and are comprised of style rules and selectors. Selectors target the element 

on the web page to style, and the style rule defines what styles to apply. Let’s look at an 

example:

<style>

p{

    color: #AAAAAA;

}

</style>

In the preceding code snippet, the style sheet is in a style tag. The p is the 

selector that tells the browser to target every paragraph tag on the web page. The 

style rule is wrapped in curly braces and is made up of properties and values. 

This case sets the color of the text in all the paragraphs to #AAAAAA which is the 

hexadecimal value of a light gray.

Selectors are where the real nuance of CSS is. This is relevant to us because D3 also 

uses CSS selectors to target elements. Similar to how S3/S4 classes can inherit from 

each other in R, we can get very specific with selectors and target elements by class or 

id, or we can use pseudo-classes to target abstract concepts such as when an element 

is hovered over. We can target ancestors and descendants of elements, up and down 

the DOM.

Note The DoM stands for the Document object Model and is the application 
programming interface (apI) that allows Javascript to interact with the HTML 
elements that are on a web page.

CHapTer 4  DaTa VIsUaLIzaTIon wITH D3



91

.classname{

/* style sheet for a class*/

}

#id{

/*style sheet for an id*/

}

element:pseudo-class{

}

 SVG
The next introductory concept for D3 is SVG, which stands for Scalable Vector Graphics. 

SVG, which is a standardized way to create vector graphics in the browser, is what D3 

uses to create data visualizations. The core functionality that we are concerned about in 

SVG is the capability to draw shapes and text and integrate them into the DOM so that 

our shapes can be scripted via JavaScript.

Note Vector graphics are graphics that are created using points and lines that 
are mathematically calculated and displayed by the rendering engine. Contrast 
this idea with bitmap or raster graphics in which the pixel display is prerendered. 
Vectors, as they are simply equations, tend to scale better and are smaller. 
However, they lack the depth that bitmap or raster graphics will have.

SVG is essentially its own markup language with its own doctype. We can write SVG 

in external .svg files or include the SVG tags directly in our HTML. Writing the SVG tags 

in our HTML page allows us to interact with our shapes via JavaScript.

SVG has support for predefined shapes as well as the capability to draw lines. The 

predefined shapes in SVG are these:

• <rect> to draw rectangles

• <circle> to draw circles

• <ellipse> to draw ellipses

• <line> to draw lines; also <polyline> and <polygon> to draw lines 

with multiple points
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Let’s look at some code examples. If we will write our SVG into an HTML document, 

we use the <svg> tag to wrap our shapes. The <svg> takes the xmlns and version 

attributes. The xmlns attribute should be the path to the SVG namespace, and the 

version is obviously the version of SVG:

<svg xmlns="  http://www.w3.org/2000/svg  " version="1.1">

</svg>

If we are writing stand-alone .svg files, we include the full doctype and xml tags to 

the page file:

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "  http://www.w3.org/

Graphics/SVG/1.1/DTD/svg11.dtd  ">

<svg xmlns=" http://www.w3.org/2000/svg " version="1.1">

</svg>

Either way, we create our shapes within the <svg> tag. Let’s create some sample 

shapes in our <svg> tag:

<svg xmlns="  http://www.w3.org/2000/svg  " version="1.1" viewBox="0 0 500 500">

     <rect x="10" y="10" width="10" height="100" stroke="#000000" 

fill="#AAAAAA" />

    <circle cx="70" cy="50" r="40" stroke="#000000" fill="#AAAAAA" />

     <ellipse cx="230" cy="60" rx="100" ry="50" stroke="#000000" 

fill="#AAAAAA" />

</svg>

This code produces the shapes shown in Figure 4-2.

Figure 4-2. A rectangle, circle, and ellipse drawn in SVG
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Notice that we assign x and y coordinates for all the shapes—in the case of the circle 

and ellipse cx and cy coordinates—as well as fill color and stroke colors. This is just 

the smallest taste; we can also create gradients and filters and then apply them to our 

shapes. We can also create text to use in our SVG drawings using the <text> tag.

Let’s take a look. We’ll update the preceding SVG code to add text labels for each shape:

<svg xmlns="  http://www.w3.org/2000/svg  " version="1.1" viewBox="0 0  

500 500">

     <rect x="80" y="20" width="10" height="100" stroke="#000000" 

fill="#AAAAAA" />

    <text x="55" y="145" fill="#000000">rectangle</text>

    <circle cx="170" cy="60" r="40" stroke="#000000" fill="#AAAAAA" />

    <text x="150" y="145" fill="#000000">circle</text>

     <ellipse cx="330" cy="70" rx="100" ry="50" stroke="#000000" 

fill="#AAAAAA" />

    <text x="295" y="145" fill="#000000">ellipse</text>

</svg>

This code creates the drawing shown in Figure 4-3.

Now we can start to see the possibilities of creating data visualizations with just these 

fundamental building blocks. Because D3 is a JavaScript library, and most of the work we 

will be doing with D3 will be in JavaScript, let’s next take a high-level look at JavaScript 

before we delve into D3.

Figure 4-3. SVG shapes with text labels
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 JavaScript
JavaScript is the scripting language of the Web. JavaScript can be included in an HTML 

document either by placing script tags inline in the document or by linking to an 

external JavaScript document:

<script>

//javascript goes here

</script>

<script src="pathto.js"></script>

JavaScript can be used to process information, react to events, and interact with the 

DOM. In JavaScript, we create variables using the var keyword.

var foo = "bar";

Note that if we do not use the var keyword, the variable that we create is assigned to 

the global scope. We don’t want to do this because our globally scoped variable could 

then be overwritten by any other code on our web page.

JavaScript looks much like other C-based languages in that each expression ends in 

a semicolon, and blocks of code such as function and conditional bodies are wrapped in 

curly braces.

Conditional statements are generally if-else statements formatted as follows:

if([condition]){

    [code to execute]

}else{

    [code to execute]

}

Functions are formatted like so:

function [function name] ([arguments]){

    [code to execute]

}

We access DOM elements in JavaScript usually by referencing the element by its id 

attribute. We do this like using the getElementById() function:

var header = document.getElementById("header");

CHapTer 4  DaTa VIsUaLIzaTIon wITH D3



95

The preceding code stores a reference to the element on the web page that has an 

ID of header. We can then update properties of this element, including adding new 

elements or removing the element altogether.

Objects in JavaScript are generally object literals, meaning that we craft them at 

runtime, composed of properties and methods. We create object literals like so:

var myObj = {

    myProp: 20,

    myfunc: function(){

    }

}

We reference properties and methods of objects using the dot operator:

myObj.myprop = 10;

See, that was fast and painless. OK, on to D3!

 History of D3
D3 stands for Data-Driven Documents and is a JavaScript library used to create 

interactive data visualizations. The seed of the idea that would become D3 started in 

2009 as Protovis, created by Mike Bostock, Vadim Ogievetsky, and Jeff Heer while they 

were with the Stanford Visualization Group.

Note Information on the stanford Visualization Group can be found at its website: 
http://vis.stanford.edu/. The original white paper for protovis can be 
found at http://vis.stanford.edu/papers/protovis.

Protovis was a JavaScript library that provided an interface for creating different 

types of visualizations. The root namespace was pv, and it provided an API for 

creating bars and dots and areas, among other things. Like D3, Protovis used SVG to 

create these shapes, but unlike D3, it wrapped the SVG calls in its own proprietary 

nomenclature.
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Protovis was abandoned in 2011, so its creators could take their learning and instead 

create and focus on D3. There is a difference in philosophy between Protovis and D3. 

Where Protovis aimed to provide wrapped functionality for creating data visualizations, 

D3 instead facilitates and streamlines the creation of data visualization by working with 

existing web standards and nomenclature. In D3, we create rectangles and circles in 

SVG, just facilitated by the syntactic sugar of D3.

 Using D3
The first thing we need to do to get working with D3 is to go to the D3 website, 

http://d3js.org/, and download the latest version (see Figure 4-4).

After that is installed, you can set up a project.

Figure 4-4. D3 home page
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 Setting Up a Project
We can include the .js file directly on our page, like so:

<script src="d3.v3.js"></script>

The root namespace is d3; all the commands that we issue from D3 will be using the 

d3 object.

 Using D3
We use the select() function to target specific elements or the selectAll() function to 

target all of a specific element type:

var body = d3.select("body");

The previous line selects the body tag and stores it in a variable named body. We can 

then change attributes of the body if we want to or add new elements to the body:

var allParagraphs = d3.select("body").selectAll("p");

The previous line selects the body tag and then selects all the paragraph tags within 

the body.

Notice that we chained the two actions together on the second line? We selected the 

body and then selected all the paragraphs, both actions chained together. Also note that 

we used the CSS selector to specify the element to target.

OK, once we have selected an element, that is now considered our selection and we 

can perform actions on that selection. We can select elements within our selection as we 

did in the previous example.

We can update attributes of the selection with the attr() function. The attr() 

function accepts two parameters: the first is the name of the attribute, and the second is 

the value to set the attribute to. Suppose we want to change the background color of the 

current document. We can just select the body and set the bgcolor attribute by adding 

this to our script block:

<script>

    d3.select("body")

         .attr("bgcolor", "#000000");

</script>
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Notice in the previous code snippet that we have brought the chained attribute 

function call to the next line. We have done this for readability.

The really fun thing with this is that because we’re talking about JavaScript, and 

functions are first-class objects in JavaScript, we can pass in a function as the value of an 

attribute so that whatever it evaluates to becomes the value that is set:

<script>

    d3.select("body")

         .attr("bgcolor", function(){

         return "#000000";

});

</script>

We can also add elements to our selection using the append() function. The 

append() function accepts a tag name as the first parameter. It will create a new element 

of the type specified and return that new element as the current selection:

<script>

var svg = d3.select("body")

         .append("svg");

</script>

The preceding code creates a new SVG tag in the body of the page and stores that 

selection in the variable svg.

Next, let’s re-create the shapes in Figure 4-3 using what we’ve just learned about D3:

<script>

    var svg = d3.select("body")

         .append("svg")

         .attr("width", 800);

    var r = svg.append("rect")

         .attr("x", 80)

         .attr("y", 20)

         .attr("height", 100)

         .attr("width", 10)

         .attr("stroke", "#000000")

         .attr("fill", "#AAAAAA");
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    var c = svg.append("circle")

         .attr("cx", 170)

         .attr("cy", 60)

         .attr("r", 40)

         .attr("stroke", "#000000")

         .attr("fill", "#AAAAAA");

    var e = svg.append("ellipse")

         .attr("cx", 330)

         .attr("cy", 70)

         .attr("rx", 100)

         .attr("ry", 50)

         .attr("stroke", "#000000")

         .attr("fill", "#AAAAAA");

</script>

For each shape, we append a new element to the SVG element and update the 

attributes.

If we compare the two methods, we can see that we just create the SVG element in 

D3, just as we do in straight markup. We then create an SVG rectangle, circle, and ellipse 

inside the SVG element along with the same attributes that we specified in the SVG 

markup. But our D3 example has one very important difference: we now have references 

to each element on the page that we can interact with.

Let’s take a look at interactions in D3.

 Binding Data
For data visualizations, the most important interaction we have with our SVG shapes 

is to bind data to them. This allows us to then reflect that data in the properties of the 

shapes.

To bind data, we simply call the data() method of a selection:

<script>

var rect = svg

    .append("rect")

    .data([1,2,3]);

</script>
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That’s fairly straightforward. We can then reference that bound data via anonymous 

functions that we pass to our attr() function calls. Let’s take a look at an example.

First, let’s create an array that we will call dataSet. To start to envision how this 

will correlate to creating a data visualization, you can think of dataSet as a list of 

nonsequential values, maybe test scores for a class or total rainfall for a set of regions:

<script>

var dataSet = [ 84,62,40,109];

</script>

Next, we will create an SVG element on the page. To do that, we’ll select the body and 

append an SVG element with a width of 800 pixels. We’ll keep a reference to this SVG 

element in a variable called svg:

<script>

var svg = d3

    .select("body")

    .append("svg")

    .attr("width", 800);

</script>

Here is where being able to bind data changes things. We will chain together a series 

of commands that will create placeholder rectangles in the SVG element based on how 

many elements exist in our data array.

We will first use selectAll() to return a reference to all rectangles in the SVG 

element. There are none yet, but there will be by the time the chain finishes executing. 

Next in the chain, we bind our dataSet variable and call enter(). The enter() function 

creates placeholder objects from the bound data. Finally, we call append() to create a 

rectangle at each placeholder that enter() created.

<script>

bars = svg

    .selectAll("rect")

    .data(dataSet)

    .enter()

    .append("rect");

</script>
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If we looked at our work so far in a browser, we would see a blank page, but if we 

looked at the HTML in a web inspector such as Firebug, we would see the SVG element 

along with the rectangles created, but with no styling or attributes specified yet, similar 

to Figure 4-5.

Next, let’s style the rectangles that we just made. We have a reference to all the 

rectangles in the variable bars, so let’s chain together a bunch of attr() calls to style the 

rectangles. While we’re at it, let’s use our bound data to size the height of the bars.

<script>

bars

    .attr("width", 15 )

    .attr("height", function(x){return x;})

    .attr("x", function(x){return x + 40;})

    .attr("fill", "#AAAAAA")

    .attr("stroke", "#000000");

</script>

The full source code looks like the following and makes the shapes that we see in 

Figure 4-6:

<script>

var dataSet = [84,62,40,109];

var svg = d3

Figure 4-5. Firebug Inspection interface
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    .select("body")

    .append("svg")

    .attr("width", 800);

bars = svg

    .selectAll("rect")

    .data(dataSet)

    .enter()

    .append("rect");

bars

    .attr("width", 15 )

    .attr("height", function(x){return x;})

    .attr("x", function(x){return x + 40;})

    .attr("fill", "#AAAAAA")

    .attr("stroke", "#000000");

</script>

Now look in Firebug or your browser’s debugging tools again; you can see the 

generated markup, as shown in Figure 4-7.

Figure 4-6. Styled rectangles for bar chart
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Now you can really see the beginnings of how we can start to make data 

visualizations with D3 by binding data to SVG shapes. Let’s take this concept another 

step forward.

 Creating a Bar Chart
Our example so far looks a lot like the start of a bar chart in that we have a number of 

bars whose heights represent data. Let’s give it some structure.

First, let’s give our SVG container a more concrete width and height. This is 

important because the size of the SVG container is what determines the scale we use to 

normalize the rest of the chart. And because we will reference this sizing throughout our 

code, let’s make sure we abstract these values into their own variables.

We will define a height and width for our SVG container. We’ll also create variables 

that will hold the minimum and maximum values that we will use on our axes: 0 and 109 

(the largest data point), respectively. We’ll also define an offset value so we can draw the 

SVG container slightly larger than our chart to give the chart margins around it.

<script>

var chartHeight = 460,

    chartWidth = 400,

    chartMin = 0,

    chartMax = 109,

    offset = 60

Figure 4-7. Rectangles shown as SVG source code in Firebug
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var svg = d3

    .select("body")

    .append("svg")

    .attr("width", chartWidth)

    .attr("height", chartHeight + offset);

</script>

We next need to fix the orientation of our bars. As shown in Figure 4-6, the bars are 

drawn from the top down, so that although their heights are accurate, they appear to be 

facing down because SVG draws and positions shapes from the top left. So to get them 

correctly oriented so the bars look like they are coming up from the bottom of the chart, 

let’s add a y attribute to our bars.

The y attribute should be a function that references the data; this function should 

subtract the bar height value from the chart height. The returned value from this 

function is the value used in the y coordinate.

<script>

bars

    .attr("width", 15 )

    .attr("height", function(x){return x;})

    .attr("y", function(x){return (chartHeight - x);})

    .attr("x", function(x){return x;})

    .attr("fill", "#AAAAAA")

    .attr("stroke", "#000000");

</script>

This flips the bars to the bottom of the SVG element. We can see the results in 

Figure 4-8.
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Now let’s scale the bars to fit the height of the SVG element. To do this, we’ll use a 

D3 scale() function. The scale() function is used to take a number within a range and 

transform it to the equivalent of that number in a different range of numbers, essentially 

to scale values to equivalent values.

In this case, we have a number range that signifies the range of values in our dataSet 

array, which signify the heights of the bars, and we want to transform these numbers to 

equivalent values:

<script>

var yscale = d3.scaleLinear()

    .domain([chartMin,chartMax])

    .range([0,(chartHeight)]);

</script>

Be sure to place this code after the section that declares the chart variables, 

preferably right before we declare the “svg” variable. We then just update the height and 

y attributes of the bars to use the yscale() function:

<script>

bars

    .attr("width", 15 )

    .attr("height", function(x){ return yscale(x);})

    .attr("y", function(x){return (chartHeight - yscale(x));})

    .attr("x", function(x){return x;})

Figure 4-8. Rectangles in bar chart no longer inverted
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    .attr("fill", "#AAAAAA")

    .attr("stroke", "#000000");

</script>

This produces the graphic shown in Figure 4-9.

Very nice! But so far, we’ve just been placing the bars based on their height instead 

of where they lie in the array. Let’s change that to make their array location more 

meaningful, so the bars are displayed in the correct order.

Figure 4-9. Rectangles for bar chart properly scaled
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To do that, we just update the x value of the bars. We’ve seen already that we can 

pass in an anonymous function to the value parameter of the attr() function. The first 

parameter in our anonymous function is the value of the current element of our array. If 

we specify a second parameter in our anonymous function, it will hold the current index 

number.

We can then reference that value and offset it to place each bar:

<script>

bars

    .attr("width", 15 )

    .attr("height", function(x){ return yscale(x);})

    .attr("y", function(x){return (chartHeight - yscale(x));})

    .attr("x", function(x, i){return (i * 20);})

    .attr("fill", "#AAAAAA")

    .attr("stroke", "#000000");

</script>

This gives us the ordering of the bars shown in Figure 4-10. Just by eyeballing it, we 

can tell that the bars are now closer representations of the data in the array—not just the 

height but also the height in the order specified in the array.
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Now let’s add text labels so that we can better see what values the heights of the bars 

are signifying.

We do that by creating SVG text elements in much the same way as creating the 

bars. We create text placeholders for every element in our data array and then style the 

text elements. You’ll notice that the anonymous function that we pass into the x- and 

y-attribute calls is almost the same for the text elements as it was for the bars, only offset 

so that the text is above and to the center of each bar:

<script>

svg.selectAll("text")

    .data(dataSet)

    .enter()

    .append("text")

    .attr("x", function(d, i) { return ((i * 20) + offset/4); })

    .attr("y", function(x, i){return (chartHeight - yscale(x) - 24) ;})

    .attr("dx", -15/2)

    .attr("dy", "1.2em")

Figure 4-10. Rectangles in bar chart ordered to follow the ordering in our data

CHapTer 4  DaTa VIsUaLIzaTIon wITH D3



109

    .attr("text-anchor", "middle")

    .text(function(d) { return d;})

    .attr("fill", "black");

</script>

This code produces the chart shown in Figure 4-11.

See the following complete source code:

<html>

<head>

<title></title>

<script src="d3.js"></script>

</head>

<body>

<script>

var dataSet = [84,62,40,109];

Figure 4-11. Bar chart with text labels
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var chartHeight = 460,

    chartWidth = 400,

    chartMin = 0,

    chartMax = 115,

    offset = 60;

var yscale = d3.scaleLinear()

    .domain([chartMin,chartMax])

    .range([0,(chartHeight)]);

var svg = d3

    .select("body")

    .append("svg")

    .attr("width", chartWidth)

    .attr("height", chartHeight + offset);

bars = svg

    .selectAll("rect")

    .data(dataSet)

    .enter()

    .append("rect");

bars

    .attr("width", 15 )

    .attr("height", function(x){ return yscale(x);})

    .attr("y", function(x){return (chartHeight - yscale(x));})

    .attr("x", function(x, i){return (i * 20);})

    .attr("fill", "#AAAAAA")

    .attr("stroke", "#000000");

svg.selectAll("text")

    .data(dataSet)

    .enter()

    .append("text")

    .attr("x", function(d, i) { return ((i * 20) + offset/4); })

    .attr("y", function(x, i){return (chartHeight - yscale(x) - 24) ;})

    .attr("dx", -15/2)

    .attr("dy", "1.2em")

    .attr("text-anchor", "middle")
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    .text(function(d) { return d;})

    .attr("fill", "black");

</script>

</body>

</html>

And finally, let’s read in our data from external files instead of hard-coding it in 

the page.

 Loading External Data
First, we’ll take the array out of our file and put it in its own external file: sampleData.csv. 

The contents of sampleData.csv are simply the following:

84,62,40,109

Next, we will use the d3.text() function to load in sampleData.csv. The way d3.

text() works is that it takes a path to an external file and then assigns it to a variable 

(in this case named data). The function receives a parameter that is the contents of the 

external file:

<script>

d3.text("sampleData.csv").then((data) => {});

</script>

The catch is that we need the contents of our external file before we can begin doing 

any charting on the data. So within the callback function, we will parse up the file and 

then wrap all our existing functionality, like so:

<html>

<head>

<title></title>

<script src="d3.js"></script>

</head>

<body>

<script>

d3.text("sampleData.csv").then((data) =>  {

var dataSet = data.split(",");
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var chartHeight = 460,

    chartWidth = 400,

    chartMin = 0,

    chartMax = 115,

    offset = 60;

var yscale = d3.scaleLinear()

    .domain([chartMin,chartMax])

    .range([0,(chartHeight)]);

var svg = d3

    .select("body")

    .append("svg")

    .attr("width", chartWidth)

    .attr("height", chartHeight + offset);

bars = svg

    .selectAll("rect")

    .data(dataSet)

    .enter()

    .append("rect");

bars

    .attr("width", 15 )

    .attr("height", function(x){ return yscale(x);})

    .attr("y", function(x){return (chartHeight - yscale(x));})

    .attr("x", function(x, i){return (i * 20);})

    .attr("fill", "#AAAAAA")

    .attr("stroke", "#000000");

svg.selectAll("text")

    .data(dataSet)

    .enter()

    .append("text")

    .attr("x", function(d, i) { return ((i * 20) + offset/4); })

    .attr("y", function(x, i){return (chartHeight - yscale(x) - 24) ;})

    .attr("dx", -15/2)

    .attr("dy", "1.2em")

    .attr("text-anchor", "middle")
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    .text(function(d) { return d;})

    .attr("fill", "black");

  })

</script>

</body>

</html>

It’s important to note that if you are running this code locally on your computer, as 

opposed to on a web server, you will get an error similar to “Cross origin requests are 

only supported for HTTP.” This is a security measure that your browser is using in order 

to prevent malicious code from running on your local machine. It’s advised to use a local 

web server to work around this issue while programming.

Returning to our d3.text() function—CSV files aren’t the only format we can read 

in. In fact, d3.text() is only syntactic sugar—a convenience method or a type-specific 

wrapper for D3’s implementation of the XMLHttpRequest object d3.xhr().

For reference, the XMLHttpRequest object is what is used in AJAX transactions to 

load content asynchronously from the client side without refreshing the page. In pure 

JavaScript, we instantiate the XHR object, pass in a URL to a resource, and the method 

to retrieve the resource (GET or POST). We also specify a callback function that will get 

invoked when the XHR object is updated. In this function, we can parse up the data and 

begin using it. See Figure 4-12 for a high-level diagram of this process.
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In D3, the d3.xhr() function is D3’s wrapper for the XMLHttpRequest object. It 

works much the same way that we just saw d3.text() work, where we pass in a URL to a 

resource and a callback function to execute.

The other type-specific convenience functions that D3 has are d3.csv(), d3.json(), 

d3.xml(), and d3.html().

 Summary
This chapter explored D3. We started out covering the introductory concepts of HTML, 

CSS, SVG, and JavaScript, at least the points that are pertinent to implementing D3. From 

there, we delved into D3, looking at introductory concepts like creating our first SVG 

shapes to expanding on that idea by making those shapes into a bar graph.

Figure 4-12. Sequence diagram of XHR transaction
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D3 is a fantastic library for crafting data visualizations. To see the full API 

documentation, see https://github.com/mbostock/d3/wiki/API- Reference.

We will return to D3, but first, we will explore some data visualizations that we can 

create that have practical application in the world of web development. The first one we 

will look at is something that you may have seen in your Google analytics dashboard or 

something similar: a data map based on user visits.
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CHAPTER 5

Visualizing Spatial Data 
from Access Logs
In the last chapter, we talked about D3 and looked at concepts from making simple 

shapes to creating a bar chart out of those shapes. In the previous two chapters, we took 

a deep dive into R. Now that you are familiar with the core technologies that we will be 

using, let’s begin looking at examples of how, as web developers, we can create data 

visualizations that communicate useful information around our domain.

The first one that we will look at is creating a data map out of our access logs.

 What Are Data Maps?
First, let’s level set and make sure that we clearly define a data map. A data map 

is a representation of information over a spatial field, a marriage of statistics with 

cartography. Data maps are some of the most easily understood and widely used data 

visualizations there are because their data is couched in something that we are all 

familiar with and use anyway: maps.

Recall the discussion in Chapter 1 of the Cholera map created by Jon Snow in 

1854. This is considered one of the earliest examples of a data map, though there are 

several notable contemporaries, including several by Charles Minard, an engineer in 

nineteenth-century France. He is most widely remembered for his data visualization of 

Napoleon’s invasion of Russia in 1812.

https://doi.org/10.1007/978-1-4842-7202-2_5#DOI
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Figure 5-1. Early data map from Charles Minard demonstrating source region 
and cattle consumption in France

Minard also created several prominent data maps. Two of his most famous data 

maps include the data map demonstrating the source region and percentage of total 

cattle consumed in France (see Figure 5-1) and the data map demonstrating the wine 

export path and destination from France (see Figure 5-2).

Chapter 5  Visualizing spatial Data from aCCess logs



119

Today, we see data maps everywhere. They can be informative and artistic 

expressions, like the wind map project from Fernanda Viegas and Martin Wattenberg 

(see Figure 5-3). Available at http://hint.fm/wind, the wind project demonstrates the 

path and force of wind currents over the United States.

Figure 5-2. Data map from Minard demonstrating wine export path and 
destination
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Data maps can be profound, such as those available at energy.gov that demonstrate 

concepts such as energy consumption by state (see Figure 5-4) or even renewable energy 

production by state.

Figure 5-3. Wind map, showing wind speeds by region for the touchdown 
of Hurricane Sandy (used with permission of Fernanda Viegas and Martin 
Wattenberg)
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You’ve now seen historical and contemporary examples of data maps. In this 

chapter, you will look at creating your own data map from web server access logs.

 Access Logs
Access logs are records that a web server keeps to track what resources were requested. 

Whenever a web page, an image, or any other kind of file is requested from a server, the 

server makes a log entry for the request. Each request has certain data points associated 

with it, usually information about the requestor of the resource (e.g., IP address and user 

agent) and general information such as time of day and what resource was requested.

Let’s look at an access log. A sample entry looks like this:

msnbot-157-55-17-199.search.msn.com - - [18/Jan/2013:13:32:15 -0400] "GET 

/robots.txt HTTP/1.1" 404 208 "-" "Mozilla/5.0 (compatible; bingbot/2.0; 

+  http://www.bing.com/bingbot.htm)"

Figure 5-4. Data map depicting energy consumption by state, from energy.gov 
(available at http://energy.gov/maps/2009- energy- consumption- person)
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This is a snippet from a sample Apache access log. Apache access logs follow the 

combined log format, which is an extension of the common log format standard of the 

World Wide Web Consortium (W3C). Documentation for the common log format can be 

found here:

www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format

The common log format defines the following fields, separated by tabs:

• IP address or DNS name of remote host

• Logname of the remote user

• Username of the remote user

• Datestamp

• The request—usually includes the request method and the path to 

the resource requested

• HTTP status code returned for the request

• Total file size of the resource requested

The combined log format adds the referrer and user agent fields. The Apache 

documentation for the combined log format can be found here:

http://httpd.apache.org/docs/current/logs.html#combined

Note that fields that are not available are represented by a single dash -.

Let’s dissect the previous log entry:

• The first field is msnbot-157-55-17-199.search.msn.com. This is a 

DNS name that just happens to have the IP address built into it. We 

can’t count on parsing the IP address out of this domain, so for now, 

just ignore the IP address. When we get to programmatically parsing 

the logs, we will use the native PHP function gethostbyname() to 

look up the IP addresses for given domain names.

• The next two fields, the logname and the user, are empty.

• Next is the datestamp: [18/Jan/2013:13:32:15 -0400].

Chapter 5  Visualizing spatial Data from aCCess logs



123

• After the datestamp is the request: "GET /robots.txt HTTP/1.1". 

If you hadn’t already guessed from the DNS name, this is a bot, 

specifically Microsoft’s msnbot replacement: the bingbot. In this 

record, the bingbot is requesting the robots.txt file.

• Next is the HTTP status of the request: 404. Clearly, there was no 

robots.txt file available.

• Next is the total payload of the request. Apparently the 404 cost  

208 bytes.

• Next is a dash to signify that the referrer was empty.

• The last is the useragent: "Mozilla/5.0 (compatible; 

bingbot/2.0; + http://www.bing.com/bingbot.htm)", which tells 

us definitively that it is indeed a bot.

Now that you have the access log and understand what is in it, you can parse it to use 

each field in it programmatically.

 Parsing the Access Log
The process of parsing the access log is the following:

 1. Read in the access log.

 2. Parse it and gather geographic data based on the stored IP 

address.

 3. Output the fields that we are interested in for our visualization.

 4. Read in this output and visualize.

We’ll use PHP for the first three steps and R for the last step. Note that you will need 

to be running PHP 5.4.10 or higher to successfully run the following PHP code.
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 Read in the Access Log
Create a new PHP document called parseLogs.php, within which you will first create a 

function to read in a file. Call this function parseLog() and have it accept the path to the 

file:

function parseLog($file){

}

Within this function, you will write some code that will open the passed-in file for 

reading and iterate through each line of the file until it reaches the end of the file. Each 

step in the iteration stores the line that is read in, in the variable $line:

$logArray = array();

$file_handle = fopen($file, "r");

while (!feof($file_handle)) {

     $line = fgets($file_handle);

}

fclose($file_handle);

Fairly standard file I/O functionality in PHP so far. Within the loop, you will stub 

out a function call to a function that you will call parseLogLine() and another function 

that you will call getLocationbyIP(). In parseLogLine(), you will split up the line and 

store the values in an array. In getLocationbyIP(), you will use the IP address to get 

geographic information. You will then store this returned array in a larger array that is 

called $logArray.

$lineArr = parseLogLine($line);

$lineArr = getLocationbyIP($lineArr);

$logArray[count($logArray)] = $lineArr;

Don’t forget to create the $logArray variable at the top of the function.

The finished function should look like so:

function parseLog($file){

$logArray = array();

$file_handle = fopen($file, "r");

while (!feof($file_handle)) {

     $line = fgets($file_handle);
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     $lineArr = parseLogLine($line);

     $lineArr = getLocationbyIP($lineArr);

     $logArray[count($logArray)] = $lineArr;

}

fclose($file_handle);

return $logArray;

}

 Parse the Log File
Next, you’ll flesh out the parseLogLine() function. First, you’ll create the empty 

function:

function parseLogLine($logLine){

}

The function will expect a single line of the access log.

Remember that each line of the access log is made up of sections of information 

separated by whitespace. Your first instinct might be to just split the line at each 

instance of a whitespace, but this would result in breaking up the user agent string (and 

potentially other fields) in unexpected ways.

For our purposes, a much cleaner way to parse the line is to use a regular expression. 

Regular expressions, called regex for short, are patterns that enable you to do quick and 

efficient string matching.

Regular expressions use special characters to define these patterns: individual 

characters, character literals, or sets of characters. A deep dive on regular expressions 

is outside of the scope of this chapter, but a great reference to read about the different 

regular expression patterns is the Microsoft regular expression Quick Reference, 

available here: http://msdn.microsoft.com/en- us/library/az24scfc.aspx.

Grant Skinner also provides a great tool for creating and debugging regular 

expressions (see Figure 5-5), which is available here: https://regexr.com.

Chapter 5  Visualizing spatial Data from aCCess logs

http://msdn.microsoft.com/en-us/library/az24scfc.aspx
https://regexr.com


126

To use Grant’s tool, change the mode at the top from JavaScript to PCRE (which 

is how PHP interprets regular expressions). Then paste in the following into the large 

“Text” box:

114.119.143.124 - - [14/Jun/2021:14:21:03 -0400] “GET /2007/12/your-daddy- 

comment-leads-to-parking-lot-attack-northwest-florida-daily-news/ HTTP/1.1” 200 

19591 “-” “Mozilla/5.0 (Linux; Android 7.0;) AppleWebKit/537.36 (KHTML, like Gecko) 

Mobile Safari/537.36 (compatible; PetalBot;+https://webmaster.petalsearch.com/

site/petalbot)”

Finally, enter the following regular expression into the “Expression” box: ^([\d.:]+) 

(\S+) (\S+) \[([\w\/]+):([\w:]+)\s([+\-]\d{4})\] “(.+?) (.+?) (.+?)” (\d{3}) (\d+|(?:.+?)) 

“([^”]*|(?:.+?))” “([^”]*|(?:.+?))”

Clicking the expression match will now let you explore how each portion of the 

regular expression is found in the log entry that we pasted in.

Turning to our PHP code, let’s define our regular expression pattern and store it in a 

variable that we will call $pattern.

Figure 5-5. Grant Skinner’s regex tool
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If you aren’t proficient with regex, you can create them fairly easily using Grant 

Skinner’s tool (refer to Figure 5-5). Using this tool, you can come up with the following 

pattern:

$pattern = '/^([\d.:]+) (\S+) (\S+) \[([\w\/]+):([\w:]+)\s([+\-

]\d{4})\] "(.+?) (.+?) (.+?)" (\d{3}) (\d+|(?:.+?)) "([^"]*|(?:.+?))" 

"([^"]*|(?:.+?))"/';

Within the tool, you can see how it breaks up the strings into the following groups 

(see Figure 5-6).

You now have a regular expression to use. Let’s use PHP’s preg_match() function. 

This takes as parameters a regular expression, a string to match it against, and an array to 

populate as the output of the pattern matching:

preg_match($pattern,$logLine,$logs);

From there, we can just create an associative array with named indexes to hold our 

parsed up line:

$logArray = array();

$logArray['ip'] = gethostbyname($logs[1]);

$logArray['identity'] = $logs[2];

$logArray['user'] = $logs[2];

$logArray['date'] = $logs[4];

$logArray['time'] = $logs[5];

$logArray['timezone'] = $logs[6];

$logArray['method'] = $logs[7];

Figure 5-6. Log file line split into groups
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$logArray['path'] = $logs[8];

$logArray['protocol'] = $logs[9];

$logArray['status'] = $logs[10];

$logArray['bytes'] = $logs[11];

$logArray['referer'] = $logs[12];

$logArray['useragent'] = $logs[13];

Our complete parseLogLine() function should now look like this:

function parseLogLine($logLine){

         $pattern = '/^([\d.:]+) (\S+) (\S+) \[([\w\/]+):([\w:]+)\

s([+\-]\d{4})\] "(.+?) (.+?) (.+?)" (\d{3}) (\d+|(?:.+?)) 

"([^"]*|(?:.+?))" "([^"]*|(?:.+?))"/';

        preg_match($pattern,$logLine,$logs);

        $logArray = array();

        $logArray['ip'] = gethostbyname($logs[1]);

        $logArray['identity'] = $logs[2];

        $logArray['user'] = $logs[2];

        $logArray['date'] = $logs[4];

        $logArray['time'] = $logs[5];

        $logArray['timezone'] = $logs[6];

        $logArray['method'] = $logs[7];

        $logArray['path'] = $logs[8];

        $logArray['protocol'] = $logs[9];

        $logArray['status'] = $logs[10];

        $logArray['bytes'] = $logs[11];

        $logArray['referer'] = $logs[12];

        $logArray['useragent'] = $logs[13];

        return $logArray;

}

Next, you will create the functionality for the getLocationbyIP() function.
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 Geolocation by IP
In the getLocationbyIP() function, you can take the array that you made by parsing 

a line of the access log and use the IP field to get the geographic location. There are 

many ways to get geographic location by IP address; most involve either calling a third- 

party API or downloading a third-party database with the IP location information 

prepopulated. Some of these third parties are freely available; some have a cost 

associated with them.

For our purposes, you can use the free API available at hostip.info. Figure 5-7 shows 

the hostip.info home page.

Figure 5-7. hostip.info home page
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The hostip.info service aggregates geotargeting information from ISPs as well 

as direct feedback from users. It exposes an API as well as a database available for 

download.

The API is available at http://api.hostip.info/. If no parameters are provided, 

the API returns the geolocation of the client. By default, the API returns XML. The return 

value looks like this:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<HostipLookupResultSet version="1.0.1" xmlns:gml="  http://www.opengis.net/

gml  " xmlns:xsi="  http://www.w3.org/2001/XMLSchema-instance  " xsi:noName

spaceSchemaLocation="  http://www.hostip.info/api/hostip-1.0.1.xsd  ">

 <gml:description>This is the Hostip Lookup Service</gml:description>

 <gml:name>hostip</gml:name>

 <gml:boundedBy>

  <gml:Null>inapplicable</gml:Null>

 </gml:boundedBy>

 <gml:featureMember>

  <Hostip>

   <ip>71.225.152.145</ip>

   <gml:name>Chalfont, PA</gml:name>

   <countryName>UNITED STATES</countryName>

   <countryAbbrev>US</countryAbbrev>

   <!-- Co-ordinates are available as lng,lat -->

   <ipLocation>

    <gml:pointProperty>

     <gml:Point srsName="  http://www.opengis.net/gml/srs/epsg.xml#4326  ">

      <gml:coordinates>-75.2097,40.2889</gml:coordinates>

     </gml:Point>

    </gml:pointProperty>

   </ipLocation>

  </Hostip>

 </gml:featureMember>

</HostipLookupResultSet>

Chapter 5  Visualizing spatial Data from aCCess logs

http://api.hostip.info/


131

You can refine the API calls. If you want only country information, you can call 

http://api.hostip.info/country.php. It returns a string with a country code. If JSON 

is preferred over XML, you can call http://api.hostip.info/get_json.php and get the 

following result:

{"country_name":"UNITED STATES","country_code":"US","city":"Chalfont, 

PA","ip":"71.225.152.145"}

To specify an IP address, add the parameter ?ip=xxxx, like so:

http://api.hostip.info/get_json.php?ip=100.43.83.146

OK, let’s code the function!

We’ll stub out the function and have it accept an array. We’ll pull the IP address from 

the array, store it in a variable, and concatenate the variable to a string that contains the 

path to the hostip.info API:

function getLocationbyIP($arr){

     $IPAddress = $arr['ip'];

     $IPCheckURL = "  http://api.hostip.info/get_json.php?ip=$IPAddress  ";

}

You’ll pass this string to the native PHP function file get_contents() and store 

the return value, the results of the API call, in a variable that you’ll name jsonResponse. 

You’ll use the PHP json_decode() function to convert the returned JSON data into a 

native PHP object:

$jsonResponse =  file_get_contents($IPCheckURL);

$geoInfo = json_decode($jsonResponse);

You next pull the geolocation data from the object and add it to the array that you 

passed into the function. The city and state information is a single string separated by a 

comma and a space (“Philadelphia, PA”), so you’ll need to split at the comma and save 

each field separately in the array.

$arr['country'] = $geoInfo->{"country_code"};

$arr['city'] = explode(",",$geoInfo->{"city"})[0];

$arr['state'] = explode(",",$geoInfo->{"city"})[1];
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Next, let’s do a little bit of error checking that will make things easier later on in the 

process. You’ll check to see whether the state string has any value; if it doesn’t, set it to 

“XX”. This will be helpful once you begin parsing data in R. And finally, you’ll return the 

updated array:

if(count($arr['state']) < 1)

     $arr['state'] = "XX";

return $arr;

The full function should look like this:

function getLocationbyIP($arr){

     $IPAddress = $arr['ip'];

     $IPCheckURL = "  http://api.hostip.info/get_json.php?ip=$IPAddress  ";

     $jsonResponse =  file_get_contents($IPCheckURL);

     $geoInfo = json_decode($jsonResponse);

     $arr['country'] = $geoInfo->{"country_code"};

     $arr['city'] = explode(",",$geoInfo->{"city"})[0];

     $arr['state'] = explode(",",$geoInfo->{"city"})[1];

     if(count($arr['state']) < 1)

          $arr['state'] = "XX";

     return $arr;

}

Finally, let’s create a function to write processed data out to a file.

 Output the Fields
You’ll create a function named writeRLog() that accepts two parameters—the array 

populated with decorated log data and the path to a file:

function writeRLog($arr, $file){

}
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You need to create a variable called writeFlag that will be the flag to tell PHP to 

either write or append data to the file. You check to see whether the file exists; if it does, 

you append content instead of overwrite. After the check, open the file:

writeFlag = "w";

if(file_exists($file)){

     $writeFlag = "a";

}

$fh = fopen($file, $writeFlag) or die("can't open file");

You then loop through the passed-in array; construct a string containing the IP 

address, date, HTTP status, country code, state, and city of each log entry; and write that 

string to the file. Once you’ve finished iterating through the array, you close the file.

for($x = 0; $x < count($arr); $x++){

     if($arr[$x]['country'] != "XX"){

           $data = $arr[$x]['ip'] . "," . $arr[$x]['date'] . "," . $arr[$x]

['status'] . "," . $arr[$x]['country'] . "," . $arr[$x]['state'] 

. "," . $arr[$x]['city'];

      }

      fwrite($fh, $data . "\n");

 }

Our completed writeRLog() function should look like this:

function writeRLog($arr, $file){

     $writeFlag = "w";

     if(file_exists($file)){

          $writeFlag = "a";

          }

          $fh = fopen($file, $writeFlag) or die("can't open file");

          for($x = 0; $x < count($arr); $x++){

               if($arr[$x]['country'] != "XX"){

                     $data = $arr[$x]['ip'] . "," . $arr[$x]['date'] . "," . 

$arr[$x]['status'] . "," . $arr[$x]['country'] . "," . 

$arr[$x]['state'] . "," . $arr[$x]['city'];

               }

               fwrite($fh, $data . "\n");
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          }

     fclose($fh);

     echo "log created";

}

 Adding Control Logic
Finally, you’ll create some control logic to invoke all these functions that you just 

created. You’ll declare the path to the access log and the path to our output flat file, call 

parseLog(), and send the output to writeRLog().

$logfile = "access_log";

$chartingData = "accessLogData.txt";

$logArr = parseLog($logfile);

writeRLog($logArr, $chartingData);

Our completed PHP code should look like the following:

<html>

<head></head>

<body>

<?php

$logfile = "access_log";

$chartingData = "accessLogData.txt";

$logArr = parseLog($logfile);

writeRLog($logArr, $chartingData);

function parseLog($file){

        $logArray = array();

        $file_handle = fopen($file, "r");

        while (!feof($file_handle)) {

           $line = fgets($file_handle);

           $lineArr = parseLogLine($line);

           $lineArr = getLocationbyIP($lineArr);

           $logArray[count($logArray)] = $lineArr;

        }
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        fclose($file_handle);

        return $logArray;

}

function parseLogLine($logLine){

         $pattern = '/^([\d.:]+) (\S+) (\S+) \[([\w\/]+):([\w:]+)\

s([+\-]\d{4})\] "(.+?) (.+?) (.+?)" (\d{3}) (\d+|(?:.+?)) 

"([^"]*|(?:.+?))" "([^"]*|(?:.+?))"/';

        preg_match($pattern,$logLine,$logs);

        $logArray = array();

        $logArray['ip'] = gethostbyname($logs[1]);

        $logArray['identity'] = $logs[2];

        $logArray['user'] = $logs[2];

        $logArray['date'] = $logs[4];

        $logArray['time'] = $logs[5];

        $logArray['timezone'] = $logs[6];

        $logArray['method'] = $logs[7];

        $logArray['path'] = $logs[8];

        $logArray['protocol'] = $logs[9];

        $logArray['status'] = $logs[10];

        $logArray['bytes'] = $logs[11];

        $logArray['referer'] = $logs[12];

        $logArray['useragent'] = $logs[13];

        return $logArray;

}

function getLocationbyIP($arr){

        $IPAddress = $arr['ip'];

        $IPCheckURL = "http://api.hostip.info/get_json.php?ip=$IPAddress";

        $jsonResponse =  file_get_contents($IPCheckURL);

        $geoInfo = json_decode($jsonResponse);

        $arr['country'] = $geoInfo->{"country_code"};

        $arr['city'] = explode(",",$geoInfo->{"city"})[0];

        $arr['state'] = explode(",",$geoInfo->{"city"})[1];

        return $arr;

}
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function writeRLog($arr, $file){

        $writeFlag = "w";

        if(file_exists($file)){

                $writeFlag = "a";

        }

        $fh = fopen($file, $writeFlag) or die("can't open file");

        for($x = 0; $x < count($arr); $x++){

                if($arr[$x]['country'] != "XX"){

                         $data = $arr[$x]['ip'] . "," . $arr[$x]['date'] 

. "," . $arr[$x]['status'] . "," . $arr[$x]

['country'] . "," . $arr[$x]['state'] . "," . 

$arr[$x]['city'];

                }

                fwrite($fh, $data . "\n");

        }

        fclose($fh);

        echo "log created";

}

?>

</body>

</html>

And it should produce a flat file that looks similar to this:

71.225.152.145,18/Jan/2013,404,US, PA,Chalfont

114.119.143.124,14/Jun/2021,200,AU,,Canberra

We have made a sample access log available here:  https://jonwestfall.com/data/

access_log.

 Creating a Data Map in R
So far, you parsed the access log, scrubbed the data, decorated it with location 

information, and created a flat file that has a subset of information. The next step is to 

visualize this data.
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Because you are making a map, you need to install the map package. Open up R; 

from the console, type the following:

> install.packages('maps')

> install.packages('mapproj')

Now we can begin! To reference the map package in the R script, you need to load it 

into memory by calling the library() function:

library(maps)

library(mapproj)

You next create several variables—one to point to our formatted access log data; 

another is a list of column names. You create a third variable, logData, to hold the data 

frame created when you read in the flat file.

logDataFile <- '/Applications/MAMP/htdocs/accessLogData.txt'

logColumns <- c("IP", "date", "HTTPstatus", "country", "state", "city")

logData <- read.table(logDataFile, sep=",", col.names=logColumns)

If you type logData in the console, you see the data frame formatted like this:

> logData

     IP             date         HTTPstatus  country  state  city

1    100.43.83.146  25/Jan/2013  404         US       NV     Las Vegas

2    100.43.83.146  25/Jan/2013  301         US       NV     Las Vegas

3    64.29.151.221  25/Jan/2013  200         US       XX     (Unknown city)

4    180.76.6.26    25/Jan/2013  200         CN       XX     Beijing

Clearly, you could start to track several different data points here. Let’s first look at 

mapping out what countries the traffic is coming from.

 Mapping Geographic Data

You can begin by pulling the unique country names from logData. You’ll store this in a 

variable named country:

> country <- unique(logData$country)
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If you type country in the console, the data looks like the following:

> country

[1] US CN CA SE UA

Levels: CA CN SE UA US

These are the country codes that you get back from iphost.info. R has a different 

set of country codes that it uses, so you’ll need to convert the iphost country codes to R 

country codes. You can do this by applying a function to the country list.

You’ll use sapply() to apply an anonymous function of your own design to the list 

of country codes. In the anonymous function, you’ll trim any whitespace and do a direct 

replacement of country codes. You will use the gsub() function to do a replacement of 

all instances of the passed-in parameter.

country <- sapply(country, function(countryCode){

  #trim whitespaces from the country code

  countryCode <- gsub("(^ +)|( +$)", "", countryCode)

  if(countryCode == "US"){

    countryCode<- "USA"

  }else if(countryCode == "AU"){

    countryCode<- "Australia"

  }}

)

You’ll notice that you are hard-coding every country code that you have. This is, of 

course, bad form, and you’ll approach this problem a very different way once you dig 

into state data.

If you type country into the console again, you’ll now see the following:

> country

         US          AU

      "USA" "Australia"

You next use the match.map() function to match the countries with the map 

package’s list of countries. The match.map() function creates a numeric vector in which 

each element corresponds to a country on the world map. The elements of intersection 
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(where countries in the country list match countries in the world map) have values 

assigned to them—specifically, the index number from the original country list. So the 

element that corresponds to USA has a 1, the element that corresponds to Canada has a 

2, and so on. Where there is no intersection, the element has the value NA.

countryMatch <-  match.map("world2", country)

Let’s next use the countryMatch list to create a color-coded country match. To 

do this, simply apply a function that checks each element. If it is not NA, assign the 

color #C6DBEF to the element, which is a nice light blue. If the element is NA, set the 

element to white or #FFFFFF. You will save the result of this in a new list that you will call 

colorCountry.

colorCountry <- sapply(countryMatch, function(c){

 if(!is.na(c)) c <- "#C6DBEF"

 else c <- "#FFFFFF"

})

Now let’s create our first visualization with the map() function! The map() function 

accepts several parameters:

• The first is the name of the database to use. The database name can 

be either world, usa state, or county; each contains data points that 

correlate to geographic areas that the map() function will draw.

• If you only want to draw a subset of the larger geographic database, 

you can specify an optional parameter named region that lists the 

areas to draw.

• You can also specify the map projection to use. A map projection is 

basically a way to represent a three-dimensional curved space on a 

flat surface. There are a number of predefined projections, and the 

mapproj package in R supports a number of these. For the world 

map that you’ll be making, you will use an equal area projection, the 

identifier of which is “azequalarea”. For more about map projections, 

see http://xkcd.com/977/.
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• You also can specify the center point of our map, in latitude and 

longitude, using the orientation parameter.

• Finally, you’ll pass the colorCountry list that you just made to the col 

parameter.

map('world', proj='azequalarea', orient=c(41,-74,0), boundary=TRUE, 

col=colorCountry, fill=TRUE)

This code produces the map that you can see in Figure 5-8.

From this map, we can see that the countries from our unique list are shaded blue 

and the rest of the countries are colored white. This is good, but we can make it better.

Figure 5-8. Data map using a world map
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 Adding Latitude and Longitude

Let’s start by adding latitude and longitude lines, which will accentuate the curvature of 

the globe and give context to where the poles are. To create latitude and longitude lines, 

we first create a new map object, but we will set plot to FALSE so that the map is not 

drawn to the screen. We’ll save this map object to a variable named m:

m <- map('world',plot=FALSE)

We’ll next call map.grid() and pass in our stored map object:

map.grid(m, col="blue", label=FALSE, lty=2, pretty=TRUE)

Note that if you are running this code line by line in the command window, it’s 

important to keep the Quartz graphic window open as you type the lines in so that R 

can update that chart. If you close the Quartz window while typing it in line by line, you 

could get an error stating that plot.new has not been called. Or you could type each line 

into a text file and copy them into the R command line all at once.

While we’re at it, let’s add a scale to the chart to show

map.scale()

Our completed R code should now look like so:

library(maps)

library(mapproj)

logDataFile <- '/Applications/MAMP/htdocs/accessLogData.txt'

logColumns <- c("IP", "date", "HTTPstatus", "country", "state", "city")

logData <- read.table(logDataFile, sep=",", col.names=logColumns)

country <- unique(logData$country)

country <- sapply(country, function(countryCode){

  #trim whitespaces from the country code

  countryCode <- gsub("(^ +)|( +$)", "", countryCode)

  if(countryCode == "US"){

    countryCode<- "USA"

  }else if(countryCode == "CN"){

    countryCode<- "China"

  }else if(countryCode == "CA"){

    countryCode<- "Canada"
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  }else if(countryCode == "SE"){

    countryCode<- "Sweden"

  }else if(countryCode == "UA"){

    countryCode<- "USSR"

  }

})

countryMatch <-  match.map("world", country)

#color code any states with visit data as light blue
colorCountry <- sapply(countryMatch, function(c){
 if(!is.na(c)) c <- "#C6DBEF"
 else c <- "#FFFFFF"
})
m <- map('world',plot=FALSE)
map('world',proj='azequalarea',orient=c(41,-74,0), boundary=TRUE, 
col=colorCountry,fill=TRUE)
map.grid(m,col="blue", label=FALSE, lty=2, pretty=TRUE)
map.scale()

And this code outputs the world map shown in Figure 5-9.

Chapter 5  Visualizing spatial Data from aCCess logs



143

Very nice! Next, let’s drill into a breakdown of visits by states in the United States.

 Displaying Regional Data

Let’s start by isolating US data; we can do this by selecting all rows in which the state 

does not equal “XX”. Remember setting the value in the state column to “XX” when we 

were parsing the access log in PHP? This is why. Countries other than the United States 

don’t have state data associated with them, so we can simply pull only the rows that have 

state data.

usData <- logData[logData$state != "XX", ]

Figure 5-9. Globe data map with latitude and longitude lines as well as scale
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We next need to replace the state abbreviations that we got from hostip.info with the 

full state names so that we can create a match.map lookup list, much like we did with the 

preceding country data.

The upside with state data is that R has a data set that contains all 50 US state 

names, abbreviations, and even more esoteric information such as area of the state and 

named divisions (New England, Middle Atlantic, and so on). For more information, type 

?state.name at the R console.

We can use the information in this data set to match the state abbreviations with the 

full state names that the map package needs. To do this, we use the apply() function to 

run an anonymous function that greps through the state.abb data set to find a match 

for the passed-in state abbreviation and then use that returned value as the index for 

retrieving the full state name from the state.name data set:

usData$state <- apply(as.matrix(usData$state), 1, function(s){

  #trim the abbreviation of whitespaces

  s <- gsub("(^ +)|( +$)", "", s)

  s <- state.name[grep(s, state.abb)]

})

We achieve the same functionality as the previous country match, but much more 

elegantly. If we were so inclined, we could go back and create our own data set of 

country names for future use to have a similar elegant solution for the country match.

Now that we have full state names to use, we can pull a unique list of state names and 

use that list to create a map matched list (again, just as we did for countries):

states <- unique(usData$state)

stateMatch <- match.map("state", states)

With our state match list, we can again apply a function to it that will look for 

matches in our match list, elements that do not have the value NA, and set the value for 

those elements to our nice light blue color while all elements that do have the value of 

NA get set to white. We save this list in a variable that we name colorMatch.

#color code any states with visit data as light blue

colorMatch <- sapply(stateMatch, function(s){

 if(!is.na(s)) s <- "#C6DBEF"

 else s <- "#FFFFFF"

})
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We can then use colorMatch in our call to the map() function:

map("state", resolution = 0,lty = 0,projection = "azequalarea", 

col=colorMatch,fill=TRUE)

Hmm, but notice something? Only the colored areas are drawn to the stage, as 

shown in Figure 5-10.

We need to make a second map() call that will draw the remainder of the map. In this 

map() call, we will set the add parameter to TRUE, which will cause the new map that we 

are drawing to be added to the current map. While we’re at it, let’s create a scale for this 

map as well:

map("state", col = "black", fill=FALSE, add=TRUE, lty=1, lwd=1, 

projection="azequalarea")

map.scale()

This code produces the finished state map in Figure 5-11.

Figure 5-10. Data map with only states that have data displayed
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 Distributing the Visualization
OK, now let’s put our R code in an R Markdown file for distribution. Let’s go into RStudio 

and click File ➤ New ➤ R Markdown. Let’s add a header and make sure that our R code 

is wrapped in ```{r} tags and that our charts have heights and widths assigned to them. 

Our completed R Markdown file should look like this:

Visualizing Spatial Data from Access Logs

========================================================

```{r}

library(maps)

library(mapproj)

logDataFile <- '/Applications/MAMP/htdocs/accessLogData.txt'

logColumns <- c("IP", "date", "HTTPstatus", "country", "state", "city")

logData <- read.table(logDataFile, sep=",", col.names=logColumns)

```

```{r fig.width=15, fig.height=10}

#chart worldwide visit data

#unfortunately there is no state.name equivalent for countries so we must check

Figure 5-11. Completed state data map
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#the explicit country names. In the us states below we are able to 

accomplish this much

#more efficiently

country <- unique(logData$country)

country <- sapply(country, function(countryCode){

  #trim whitespaces from the country code

  countryCode <- gsub("(^ +)|( +$)", "", countryCode)

  if(countryCode == "US"){

    countryCode<- "USA"

  }else if(countryCode == "CN"){

    countryCode<- "China"

  }else if(countryCode == "CA"){

    countryCode<- "Canada"

  }else if(countryCode == "SE"){

    countryCode<- "Sweden"

  }else if(countryCode == "UA"){

    countryCode<- "USSR"

  }

})

countryMatch <-  match.map("world", country)

#color code any states with visit data as light blue

colorCountry <- sapply(countryMatch, function(c){

 if(!is.na(c)) c <- "#C6DBEF"

 else c <- "#FFFFFF"

})

m <- map('world',plot=FALSE)

map('world',proj='azequalarea',orient=c(41,-74,0), boundary=TRUE, 

col=colorCountry,fill=TRUE)

map.grid(m,col="blue", label=FALSE, lty=2, pretty=FALSE)

map.scale()

```

```{r fig.width=10, fig.height=7}

#isolate the US data, scrub any unknown states

usData <- logData[logData$state != "XX", ]

usData$state <- apply(as.matrix(usData$state), 1, function(s){

  #trim the abbreviation of whitespaces

  s <- gsub("(^ +)|( +$)", "", s)
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  s <- state.name[grep(s, state.abb)]

})

s <- map('state',plot=FALSE)

states <- unique(usData$state)

stateMatch <- match.map("state", states)

#color code any states with visit data as light blue

colorMatch <- sapply(stateMatch, function(s){

 if(!is.na(s)) s <- "#C6DBEF"

 else s <- "#FFFFFF"

})

map("state", resolution = 0,lty = 0,projection = "azequalarea", 

col=colorMatch,fill=TRUE)

map("state", col = "black",fill=FALSE,add=TRUE,lty=1,lwd=1,projection="azeq

ualarea")

map.scale()

```

This code produces the output shown in Figure 5-12. I have also made this R script 

available in the code download for this book.
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Figure 5-12. Data maps in R Markdown
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Figure 5-12. (continued)
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 Summary
This chapter discussed parsing access logs to produce data map visualizations. You 

looked at both global country data in your maps and more localized state data. This is 

the first taste of how you can begin to bring usage data to life.

The next chapter looks at bug backlog data in the context of time series charts.
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CHAPTER 6

Visualizing Data over Time
The last chapter discussed using access logs to create data maps representing the 

geographic location of users. We used the map and mapproj (for map projections) 

packages to create these visualizations.

This chapter explores creating time series charts, which are graphs that compare 

changes in values over time. They are generally read left to right with the x-axis 

representing some measure of time and the y-axis representing the range of values.  

This chapter discusses visualizing defects over time.

Tracking defects over time allows us to identify not only spikes in issues but also 

larger patterns in workflows, especially when we include more granular details such 

as bug criticality and include cross-referencing data such as dates for events like start 

and end of iteration. We begin to expose trends such as when during an iteration bugs 

get opened, when most of the blocker bugs get opened, or what iterations produce the 

highest number of bugs. This kind of self-evaluation and reflection are what allow us 

to identify and focus attention on blind spots or areas of improvement. It also allows 

us to recognize victories in a larger scope that might be missed when viewing the daily 

numbers without context.

A case in point: recently our organization set a larger group goal of achieving a 

certain bug number by the end of the year, a percent of the total open bugs that we 

had open at the beginning of the year. With our peers and our management staff, we 

coached all the developers, created process improvements, and won hearts and minds 

for this goal. At the end of the year, the number of bugs we had remaining open was 

about the same as when we had started. We were confused and concerned. But when 

we summed the daily numbers, we realized that we had achieved something larger than 

we anticipated: we actually opened one-third fewer bugs overall year over year from the 

previous year. This was huge and would easily have been missed if we weren’t looking at 

the data with a critical eye to the larger picture.

https://doi.org/10.1007/978-1-4842-7202-2_6#DOI
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 Gathering Data
The first step of creating a defect time series chart is to decide on a time period that we 

want to look at and gather the data. This means getting an export of all the bugs for a 

given time period.

This step is completely dependent on the bug tracing software that you may 

use. Maybe you use HP’s Quality Center because it makes sense with the rest of your 

organization’s testing needs (such as being able to work with LoadRunner). Maybe you 

use a hosted web-based solution such as Rally because you get defect management 

bundled in with your user story and release tracking. Maybe you have your own 

installation of Bugzilla because it’s open and free.

Whatever the case, all defect management software has a way to export your current 

bug list. Depending on the defect-tracking software used, you can export to a flat file, 

such as a comma or tab-separated file. The software can also allow access to its contents 

via an API so you can create a script that accesses the API and exposes the content.

Either way, there are two important main cases when looking at bugs over time:

• Running total of bugs by date

• New bugs by date

For either of these cases, the minimum fields that we care about when we export 

from the bug-tracking software are the following:

• Date opened

• Defect id

• Defect status

• Severity of defect

• Description of the defect

The exported bug data should look something like this:

Date, ID, Severity, Status, Summary

6/7/20,DE45091,Minor,Open,videos not playing

8/21/20,DE45092,Blocker,Open,alignment off

3/7/20,DE45093,Moderate,Closed,monsters attacking

Let’s process the data to be able to visualize it.
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 Data Analysis with R
The first thing is to read in and order the data. Assuming that data is exported to a flat file 

named allbugs.csv, we can read in the data as follows (we have provided sample data 

for it at http://jonwestfall.com/data/allbugs.csv):

bugExport <- "/Applications/MAMP/htdocs/allbugs.csv"

bugs <- read.table(bugExport, header=TRUE, sep=",")

Let’s order the data frame by date. To do this, we have to convert the Date column, 

which is read in as a string, into a Date object using the as.Date() function. The as.

Date() function accepts several symbols to signify how to read and structure the date 

object, as shown in Table 6-1.

So for the date "04/01/2013", we pass in "%m/%d/%Y"; for "April 01, 13", we pass 

in "%B %d, %Y". You can see how the pattern matches up:

as.Date(bugs$Date,"%m/%d/%y")

Table 6-1. as.Date( ) function symbols

Symbol Meaning

%m numeric month

%b month name as string, abbreviated

%B Full month name as string

%d numeric day

%a Weekday as abbreviated string

%A Full weekday as string

%y Year as two-digit number

%Y Year as four-digit number
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We’ll use the converted date in the order() function, which returns a list of index 

numbers from the bugs data frame, corresponding with the correct way to order the 

values in the data frame:

> order(as.Date(bugs$Date,"%m/%d/%y"))

   [1] 127  90 187 112  13 119 137 101  37  53  52  67 125   4  81  93 136   

3  55  62  33  25 130  75  85  28

  [27]  44 159 126 107  30 191  80 124  36 104  18  24  82  20  21  34  56 

147  29 156  16  59  51 139   1 123

  [53] 113 146 148   5 103  43  83  23 173  11 168  99  35   7 192  42 142 

121   9  69   2 171  60  94 164  17

  [79]  91  84 178  96 105   8 110  39 177 109  97 120 135  58  79  15 

111  49 117  50  57  92 129 114 145 158

[105] 116 151 143 162  31  73  77 182  26  74 195  10  48  88  76 183 115 

184 189 108  61 174 144 186  12 134

[131] 157  41  86  27 175   6 165  46 118 188  65 141  22 169 190  72  66 

154  40  47  64 166  14  87  95 155

[157] 193 133 179  54 140 128  89 102 161  63  45  78 138 180 149 185 

106  38 181 172 176 153 160 150 170 122

[183] 194 100 167  68  98 132  70 152  19 163  71  32 131

Finally, we’ll use the results of the order() function as the indexes of the bugs data 

frame and pass the results back into the bugs data frame:

bugs <- bugs[order(as.Date(bugs$Date," %m/%d/%y ")),]

This code reorders the bugs data frame based on the order of the indexes returned in 

the order() function. It will be handy when we begin to slice up the data. The data frame 

should now be a chronologically ordered list of bugs, which looks like the following:

> bugs

        Date      ID Severity Status                 Summary

127  1/3/20 DE45217    Minor   Open     Mug of coffee empty

90   1/4/20 DE45180    Minor Closed mug of coffee destroyed

187  1/5/20 DE45277    Minor   Open             Zerg attack

112  1/9/20 DE45202  Blocker Closed                 Monkeys

13  1/12/20 DE45103    Minor   Open     Mug of coffee empty

119 1/13/20 DE45209  Blocker Closed     The plague occurred
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Let's write this newly ordered list back out to a new file that we will 

reference later called allbugsOrdered.csv:

write.table(bugs, col.names=TRUE, row.names=FALSE, file="allbugsOrdered.

csv", quote = FALSE, sep = ",")

This will come in handy later when we look at this data in D3.

 Calculating the Bug Count
Next, we will calculate the total bug count by date. This will show how many new bugs 

are opened by day.

To do this, we pass bugs$Date into the table() function, which builds a data 

structure of counts of each date in the bugs data frame:

totalBugsByDate <- table(bugs$Date)

So the structure of totalBugsByDate looks like the following:

> totalBugsByDate

 1/11/21  1/12/20  1/12/21  1/13/20  1/17/21  1/18/21   1/2/21  1/21/20  1/22/20

       1        1        3        1        2        1        1        1        1

 1/24/20  1/24/21  1/25/20  1/27/21  1/29/21   1/3/20   1/4/20   1/5/20   1/5/21

       1        1        1        1        1        1        1        1        1

  1/9/20  10/1/20 10/10/20 10/15/20 10/16/20 10/18/20 10/21/20 10/25/20 10/26/20

       1        1        1        1        1        2        2        1        1

10/29/20 10/30/20  10/6/20 11/17/20 11/18/20 11/19/20 11/21/20 11/23/20 11/26/20

       2        1        1        1        1        1        1        1        2

 11/4/20  11/8/20 12/14/20 12/15/20 12/17/20 12/21/20 12/22/20 12/23/20 12/24/20

       2        1        2        1        1        1        2        1        1

12/27/20 12/29/20  12/3/20 12/31/20  2/12/21  2/13/21  2/14/20  2/15/20   2/15/21

       1        1        1        1        1        1        1        1        1

 2/16/20  2/22/21  2/24/20  2/25/21  2/26/21  2/28/21   2/3/21   2/4/21   2/8/21

       1        2        1        1        2        1        1        1        1

  3/1/20   3/1/21  3/11/21  3/14/21  3/17/21   3/2/20   3/2/21  3/22/20  3/23/21

       2        1        3        1        1        1        1        2        1

 3/24/20  3/25/21  3/26/20  3/28/20   3/3/21  3/31/20  3/31/21   3/6/21   3/7/20
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       1        1        1        1        1        1        1        1        1

  3/7/21  4/12/21  4/13/20  4/15/21  4/18/21  4/19/21  4/20/20  4/25/20  4/26/21

       1        1        1        1        2        1        1        1        1

 4/27/20  4/29/21   4/4/20   4/5/21   4/7/20   4/8/20   5/1/20  5/10/20  5/11/21

       1        1        1        3        1        2        2        1        1

 5/12/20  5/14/21  5/16/21  5/17/20  5/17/21   5/2/21  5/20/20  5/20/21  5/22/20

       2        1        1        1        1        1        1        2        2

 5/24/21  5/25/20  5/26/21  5/27/20  5/27/21  5/28/20  5/28/21  5/29/21  5/30/20

       1        1        1        1        1        1        1        2        1

 5/31/20   5/6/20   5/8/20  6/11/20  6/11/21  6/14/20  6/16/21   6/2/21  6/20/20

       1        1        1        1        1        1        2        1        1

 6/28/20   6/3/20   6/3/21   6/4/20   6/4/21   6/6/21   6/7/20   6/7/21   6/8/21

       1        1        1        1        1        1        2        1        1

  6/9/21  7/14/20  7/18/20   7/2/20  7/22/20  7/23/20  7/25/20  7/28/20  7/29/20

       1        1        2        1        1        1        1        1        1

  7/9/20  8/10/20  8/17/20   8/2/20  8/21/20  8/22/20  8/23/20  8/24/20  8/26/20

       1        1        2        1        1        1        1        2        1

 8/27/20  8/28/20  8/29/20   8/3/20   8/6/20  9/10/20  9/11/20  9/14/20   9/16/20

       1        1        1        1        1        1        1        1        1

  9/2/20  9/21/20   9/8/20

       1        1        1

Let’s plot this data out to get an idea of how many bugs are opened each day:

plot(totalBugsByDate, type="l", main="New Bugs by Date", col="red", 

ylab="Bugs")

This code creates the chart shown in Figure 6-1.
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Figure 6-1. Time series of new bugs by date

Now that we have a count of how many bugs are generated each day, we can get a 

cumulative sum by using the cumsum() function. It takes the new bugs opened each day 

and creates a running sum of them, updating the total each day. It allows us to generate a 

trend line for the cumulative count of bugs over time.

> runningTotalBugs <- cumsum(totalBugsByDate)

>

> runningTotalBugs

 1/11/21  1/12/20  1/12/21  1/13/20  1/17/21  1/18/21   1/2/21  1/21/20  1/22/20

       1        2        5        6        8        9       10       11       12

 1/24/20  1/24/21  1/25/20  1/27/21  1/29/21   1/3/20   1/4/20   1/5/20   1/5/21

      13       14       15       16       17       18       19       20       21

  1/9/20  10/1/20 10/10/20 10/15/20 10/16/20 10/18/20 10/21/20 10/25/20 10/26/20

      22       23       24       25       26       28       30       31       32

10/29/20 10/30/20  10/6/20 11/17/20 11/18/20 11/19/20 11/21/20 11/23/20 11/26/20
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      34       35       36       37       38       39       40       41       43

 11/4/20  11/8/20 12/14/20 12/15/20 12/17/20 12/21/20 12/22/20 12/23/20 12/24/20

      45       46       48       49       50       51       53       54       55

12/27/20 12/29/20  12/3/20 12/31/20  2/12/21  2/13/21  2/14/20  2/15/20  2/15/21

      56       57       58       59       60       61       62       63       64

 2/16/20  2/22/21  2/24/20  2/25/21  2/26/21  2/28/21   2/3/21   2/4/21   2/8/21

      65       67       68       69       71       72       73       74       75

  3/1/20   3/1/21  3/11/21  3/14/21  3/17/21   3/2/20   3/2/21  3/22/20  3/23/21

      77       78       81       82       83       84       85       87       88

 3/24/20  3/25/21  3/26/20  3/28/20   3/3/21  3/31/20  3/31/21   3/6/21   3/7/20

      89       90       91       92       93       94       95       96       97

  3/7/21  4/12/21  4/13/20  4/15/21  4/18/21  4/19/21  4/20/20  4/25/20  4/26/21

      98       99      100      101      103      104      105      106      107

 4/27/20  4/29/21   4/4/20   4/5/21   4/7/20   4/8/20   5/1/20  5/10/20  5/11/21

     108      109      110      113      114      116      118      119      120

 5/12/20  5/14/21  5/16/21  5/17/20  5/17/21   5/2/21  5/20/20  5/20/21  5/22/20

     122      123      124      125      126      127      128      130      132

 5/24/21  5/25/20  5/26/21  5/27/20  5/27/21  5/28/20  5/28/21  5/29/21  5/30/20

     133      134      135      136      137      138      139      141      142

 5/31/20   5/6/20   5/8/20  6/11/20  6/11/21  6/14/20  6/16/21   6/2/21  6/20/20

     143      144      145      146      147      148      150      151      152

 6/28/20   6/3/20   6/3/21   6/4/20   6/4/21   6/6/21   6/7/20   6/7/21   6/8/21

     153      154      155      156      157      158      160      161      162

  6/9/21  7/14/20  7/18/20   7/2/20  7/22/20  7/23/20  7/25/20  7/28/20   7/29/20

     163      164      166      167      168      169      170      171      172

  7/9/20  8/10/20  8/17/20   8/2/20  8/21/20  8/22/20  8/23/20  8/24/20  8/26/20

     173      174      176      177      178      179      180      182      183

 8/27/20  8/28/20  8/29/20   8/3/20   8/6/20  9/10/20  9/11/20  9/14/20  9/16/20

     184      185      186      187      188      189      190      191      192

  9/2/20  9/21/20   9/8/20

     193      194      195
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This is exactly what we need to now plot out the way the bug backlog grows or 

shrinks each day. To do that, let’s pass runningTotalBugs to the plot() function. We 

set the type to "l" to signify that we are creating a line chart and then name the chart 

Cumulative Defects Over Time. In the plot() function, we also turn the axes off so that 

we can draw custom axes for this chart. We will want to draw custom axes so that we can 

specify the dates as the x-axis labels.

To draw custom axes, we use the axis() function. The first parameter in the axis() 

function is a number that tells R where to draw the axis.

• 1 corresponds to the x-axis at the bottom of the chart.

• 2 to the left of the chart.

• 3 to the top of the chart.

• 4 to the right of the chart.

plot(runningTotalBugs, type="l", xlab="", ylab="", pch=15, lty=1, 

col="red", main="Cumulative Defects Over Time", axes=FALSE)

axis(1, at=1: length(runningTotalBugs), lab= row.names(totalBugsByDate))

axis(2, las=1, at=10*0:max(runningTotalBugs))

Note that the plot type is set to a lowercase L, not an uppercase i or 1. This code 

creates the time series chart shown in Figure 6-2.
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This shows the progressively increasing bug backlog, by date.

The complete R code so far is as follows:

bugExport <- "allbugs.csv"

bugs <- read.table(bugExport, header=TRUE, sep=",")

as.Date(bugs$Date,"%m/%d/%y")

order(as.Date(bugs$Date,"%m/%d/%y"))

bugs <- bugs[order(as.Date(bugs$Date," %m/%d/%y ")),]

write.table(bugs, col.names=TRUE, row.names=FALSE, file="allbugsOrdered.

csv", quote = FALSE, sep = ",")

totalBugsByDate <- table(bugs$Date)

plot(totalBugsByDate, type="l", main="New Bugs by Date", col="red", 

ylab="Bugs")

Figure 6-2. Cumulative defects over time
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runningTotalBugs <- cumsum(totalBugsByDate)

runningTotalBugs

plot(runningTotalBugs, type="l", xlab="", ylab="", pch=15, lty=1, 

col="red", main="Cumulative Defects Over Time", axes=FALSE)

axis(1, at=1: length(runningTotalBugs), lab= row.names(totalBugsByDate))

axis(2, las=1, at=10*0:max(runningTotalBugs))

Let’s take a look at the criticality of the bugs, which shows not just when the bugs are 

opened but also when the most severe (or non-severe) bugs are being opened.

 Examining the Severity of the Bugs
Remember that when we exported the bug data, we included the Severity field, which 

indicates the level of criticality of each bug. Each team and organization might have their 

own classification of severity, but generally they include these:

• Blockers are bugs so severe that they prevent the launch of a body 

of work. They generally have broken functionality or are missing 

sections of a widely used feature. They can also be discrepancies with 

contractually or legally binding features such as closed captioning or 

digital rights protection.

• Moderates are bugs that are severe but not so damaging that they 

gate a release. They can have broken functionality of less-used 

features. The scope of accessibility, or how widely used a feature is, 

is usually a determining factor between making a bug a blocker or a 

critical.

• Minors are bugs with very minimal if any impact and might not even 

be noticeable to an end user.

To break out the bugs by severity, we simply call the table() function, just as we did 

to break out bugs out by date, but this time add in the Severity column as well:

bugsBySeverity <- table(factor(bugs$Date),bugs$Severity)
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This code creates a data structure that looks like so:

          Blocker Minor Moderate

  1/11/21       0     1        0

  1/12/20       0     1        0

  1/12/21       1     2        0

  1/13/20       1     0        0

  1/17/21       2     0        0

  1/18/21       0     0        1

  1/2/21        0     1        0

  1/21/20       1     0        0

  1/22/20       1     0        0

  1/24/20       0     1        0

We can then plot this data object. The way we do this is to use the plot() function to 

create a chart for one of the columns and then use the lines() function to draw lines on 

the chart for the remaining columns:

plot(bugsBySeverity[,3], type="l", xlab="", ylab="", pch=15, lty=1, 

col="orange", main="New Bugs by Severity and Date", axes=FALSE)

lines(bugsBySeverity[,1], type="l", col="red", lty=1)

lines(bugsBySeverity[,2], type="l", col="yellow", lty=1)

axis(1, at=1: length(runningTotalBugs), lab= row.names(totalBugsByDate))

axis(2, las=1, at=0:max(bugsBySeverity[,3]))

legend("topleft", inset=.01, title="Legend", colnames(bugsBySeverity), 

lty=c(1,1,1), col= c("red", "yellow", "orange"))

This code produces the chart shown in Figure 6-3.
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This is great, but what if we want to see the cumulative bugs by severity? We can 

simply use the preceding R code, but instead of plotting out the columns, we can plot out 

the cumulative sum of each column:

plot(cumsum(bugsBySeverity[,3]), type="l", xlab="", ylab="", pch=15, lty=1, 

col="orange", main="Running Total of Bugs by Severity", axes=FALSE)

lines(cumsum(bugsBySeverity[,1]), type="l", col="red", lty=1)

lines(cumsum(bugsBySeverity[,2]), type="l", col="yellow", lty=1)

axis(1, at=1: length(runningTotalBugs), lab= row.names(totalBugsByDate))

axis(2, las=1, at=0:max(cumsum(bugsBySeverity[,3])))

legend("topleft", inset=.01, title="Legend", colnames(bugsBySeverity), 

lty=c(1,1,1), col= c("red", "yellow", "orange"))

Figure 6-3. Our plot() and lines() functions drawing the chart of bugs by severity
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This code produces the chart shown in Figure 6-4.

 Adding Interactivity with D3
The previous example is a great way to visualize and disseminate information around the 

creation of defects. But what if we could take it a step further and allow the consumers of our 

visualizations to dive deeper into the data points that interest them? Say we wanted to allow 

the user to mouse over a particular point in a time series and see a list of all the bugs that 

make up that data point. We can do just that with D3; let’s walk through it and find out how.

First, let’s create a new file with the base HTML skeletal structure with a reference to 

D3.js and save it as timeseriesGranular.htm. We’ll want to use the older version of D3 for 

this example—version 3 (d3.v3.js, available in the code download for this book), in that it 

allowed for a bit more flexibility and step-by-step building than the newer code structure.

Figure 6-4. Running total of bugs by severity
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<html>

<head></head>

<body>

<script src="d3.v3.js"></script>

</body>

</html>

Next, we set some preliminary data in a new script tag. We create an object to 

hold margin data for the graphic, as well as height and width. We also create a D3 time 

formatter to convert the dates that are read in from string to a native Date object.

<script>

var margin = {top: 20, right: 20, bottom: 30, left: 50},

 width = 960 - margin.left - margin.right,

 height = 500 - margin.top - margin.bottom;

var parseDate = d3.timeFormat("%m/%d/%y").parse;

</script>

 Reading in the Data
We add in some code to read in the data (the allbugsOrdered.csv file that was output 

from R earlier). Recall that this file contains the entire bug data ordered by date.

We use the d3.csv() function to read this file:

• The first parameter is the path to the file.

• The second parameter is the function to execute once the data is 

read in. It is in this anonymous function that we add most of the 

functionality, or at least the functionality that is dependent on having 

data to process.

The anonymous function accepts two parameters:

• The first catches any errors that may occur.

• The second is the contents of the file being read in.
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In the function, we first loop through the contents of the data and use the date 

formatter to convert all the values in the Date column to a native JavaScript Date object:

d3.csv("allbugsOrdered.csv", function(error, data) {

        data.forEach(function(d) {

        d.Date = parseDate(d.Date);

});

});

If we were to console.log() the data, it would be an array of objects that look like 

Figure 6-5.

Within the anonymous function but after the loop, we use the d3.nest() function to 

create a variable that holds the bug data grouped by date. We name this variable nested_

data:

nested_data = d3.nest()

.key(function(d) { return d.Date; })

.entries(data);

The nested_data variable is now a tree structure—specifically a list that is indexed 

by date, and each index has a list of bugs. If we were to console.log() nested_data, it 

would be an array of objects that look like Figure 6-6.

Figure 6-5. Our bug data object

Figure 6-6. The array containing our bug data objects
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 Drawing on the Page
We are ready to start drawing to the page. So let’s step out of the callback function and go 

to the root of the script tag and write out the SVG tag to the page by using the margins, 

width, and height that were defined previously:

var svg = d3.select("body").append("svg")

 .attr("width", width + margin.left + margin.right)

 .attr("height", height + margin.top + margin.bottom)

        .append("g")

 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

This is the container in which we draw the axes and the trend lines.

Still at the root level, we add a D3 scale object for both the x- and y-axes, using the 

width variable for the x-axis range and the height variable for the y-axis range. We add 

the x- and y-axes at the root level, passing in their respective scale objects and orienting 

them at the bottom and left.

var xScale = d3.time.scale()

 .range([0, width]);

var yScale= d3.scale.linear()

 .range([height, 0]);

var xAxis = d3.svg.axis()

 .scale(xScale)

 .orient("bottom");

var yAxis = d3.svg.axis()

 .scale(yScale)

 .orient("left");

But they still aren’t showing on the page. We need to return to the anonymous 

function that we created in the d3.csv() call and add the nested_data list that we 

created as the domain data for the newly created scales:

xScale.domain(d3.extent(nested_data, function(d) { return new Date(d.key); }));

yScale.domain(d3.extent(nested_data, function(d) { return d.values.length; }));
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From here, we need to generate the axes. We do this by adding and selecting an 

SVG g element, used for generic grouping, and adding this selection to the xAxis() 

and yAxis() D3 functions. This also goes in the anonymous callback function that gets 

invoked when the data is loaded.

We also need to transform the x-axis by adding the height of the chart so that it is 

drawn at the bottom of the graph:

svg.append("g")

 .attr("transform", "translate(0," + height + ")")

 .call(xAxis);

svg.append("g")

 .call(yAxis)

This creates the start of the chart with meaningful axes shown in Figure 6- 7.

The trend line needs to be added. Back at the root level, let’s create a variable named 

line to be an SVG line. Assume for a minute that we have already set the data property 

for the line. We haven’t yet, but we will in a minute. For the x value of the line, we will 

have a function that returns the date filtered through the xScale scale object. For the y 

value of the line, we will create a function that returns the bug count values run through 

the yScale scale object.

Figure 6-7. Time series beginning to form; x- and y-axes but no line yet
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var line = d3.svg.line()

 .x(function(d) { return xScale(new Date(d.key)); })

 .y(function(d) { return yScale(d.values.length); });

Next, we return to the anonymous function that processes the data. Right below the 

added axes, we will append an SVG path. We set the nested_data variable as the datum 

for the path and the newly created line object as the d attribute. For reference, the d 

attribute is where we specify path descriptions. See here for documentation around the d 

attribute: https://developer.mozilla.org/en- US/docs/SVG/Attribute/d.

svg.append("path")

 .datum(nested_data)

 .attr("d", line);

We can now start to see something in a browser. The code so far should look like so:

<!DOCTYPE html>

<head>

<meta charset="utf-8">

</head>

<body>

        <script src="d3.v3.js"></script>

<script>

var margin = {top: 20, right: 20, bottom: 30, left: 50},

 width = 960 - margin.left - margin.right,

 height = 500 - margin.top - margin.bottom;

var parseDate = d3.time.format("%m-%d-%Y").parse;

var xScale = d3.time.scale()

 .range([0, width]);

var yScale = d3.scale.linear()

 .range([height, 0]);

var xAxis = d3.svg.axis()

         .scale(xScale)

         .orient("bottom");

var yAxis = d3.svg.axis()

         .scale(yScale)

         .orient("left");
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var line = d3.svg.line()

 .x(function(d) { return xScale(new Date(d.key)); })

        .y(function(d) { return yScale(d.values.length); });

var svg = d3.select("body").append("svg")

 .attr("width", width + margin.left + margin.right)

 .attr("height", height + margin.top + margin.bottom)

        .append("g")

 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

d3.csv("allbugsOrdered.csv", function(error, data) {

        data.forEach(function(d) {

                d.Date = parseDate(d.Date);

        });

 nested_data = d3.nest()

                .key(function(d) { return d.Date; })

                .entries(data);

          xScale.domain(d3.extent(nested_data, function(d) { return new 

Date(d.key); }));

          yScale.domain(d3.extent(nested_data, function(d) { return 

d.values.length; }));

         svg.append("g")

         .attr("transform", "translate(0," + height + ")")

         .call(xAxis);

                svg.append("g")

                 .call(yAxis);

                svg.append("path")

                 .datum(nested_data)

                 .attr("d", line);

});

</script>

</body>

</html>

This code produces the graphic shown in Figure 6-8.
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But this isn’t quite right. The shading of the path is based on the browser’s best guess 

of intent, shading what it perceives to be the closed areas. Let’s use CSS to explicitly turn 

off shading and instead set the color and width of the path line:

<style>

.trendLine {

 fill: none;

 stroke: #CC0000;

 stroke-width: 1.5px;

}

</style>

We created a style rule for any element on the page with the class trendLine. Let’s 

next add the class to the SVG path in the same block of code in which we create the path:

Svg.append("path")

 .datum(nested_data)

 .attr("d", line)

 .attr("class", "trendLine");

Figure 6-8. Time series with line data but incorrect fill
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This code produces the chart shown in Figure 6-9.

Looking much better! There are some minor things we should change, such as adding 

text labels to the y-axis and trimming the width of the axis lines to make them neater:

.axis path{

 fill: none;

 stroke: #000;

 shape-rendering: crispEdges;

}

This will give us tighter-looking axes. We just need to apply the style to the axes when 

we create them:

svg.append("g")

 .attr("transform", "translate(0," + height + ")")

 .call(xAxis)

 .attr("class", "axis");

svg.append("g")

 .call(yAxis)

 .attr("class", "axis");

Figure 6-9. Time series with corrected line but unstyled axes
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The results can be seen in Figure 6-10.

This is great so far, but it shows no real benefit from doing this in R. In fact, we wrote 

quite a bit of additional code just to get parity and didn’t even do any data cleaning that 

we did in R.

The real benefit of using D3 is adding interactivity.

 Adding Interactivity
Say we have this time series of new bugs, and we were curious what the bugs were in 

that large spike in mid-February. By taking advantage of the fact that we are working in 

HTML and JavaScript, we can extend this functionality by adding in a tooltip box that 

lists the bugs for each date.

To do this, we first should create obvious areas in which users can mouse over, such 

as red circles at each data point or discrete date. To do that, we simply need to create 

SVG circles right below where we added in the path, in the anonymous function that 

is fired when the external data is read in. We set the nested_data variable as the data 

attribute of the circles, make them red with a radius of 3.5, and set their x and y attributes 

to be tied to the date and bug totals, respectively:

Figure 6-10. Time series updated with styled axes
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svg.selectAll("circle")

.data(nested_data)

.enter().append("circle")

        .attr("r", 3.5)

        .attr("fill", "red")

        .attr("cx", function(d) { return xScale(new Date(d.key)); })

        .attr("cy", function(d) { return yScale(d.values.length);})

This code updates the existing time series so it looks like Figure 6-11. These red 

circles are now areas of focus in which users can mouse over and see additional 

information.

Let’s next code up a div to act as the tooltip that we will show with relevant bug data. 

To do this, we will create a new div, right below where we created the line variable at 

the root of the script tag. We do this in D3 once again by selecting the body tag and 

appending a div to it, giving it a class and id of tooltip—both so that we can have the 

tooltip style apply to it (which we will create in just a minute) and so we can interact 

with it by ID later on in the chapter. We will have it hidden by default. We will store a 

reference to this div in a variable that we will call tooltip.

Figure 6-11. Circles added to each data point on the line
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var tooltip = d3.select("body")

 .append("div")

 .attr("class", "tooltip")

 .attr("id", "tooltip")

 .style("position", "absolute")

 .style("z-index", "10")

 .style("visibility", "hidden");

We next need to style this div using CSS. We adjust the opacity to be only 75 percent 

visible, so that when the tooltip shows up over a trend line, we can see the trend line 

behind it. We align the text, set the font size, make the div have a white background, and 

give it rounded corners.

.tooltip{

        opacity: .75;

        text-align:center;

        font-size:12px;

        width:100px;

        padding:5px;

        border:1px solid #a8b6ba;

        background-color:#fff;

        margin-bottom:5px;

        border-radius: 19px;

        -moz-border-radius: 19px;

        -webkit-border-radius: 19px;

}

We next have to add a mouseover event handler to the circles to populate the tooltip 

with information and unhide the tooltip. To do this, we return to the block of code in 

which we created the circles and add in a mousemove event handler that fires off an 

anonymous function.

Inside the anonymous function, we overwrite the innerHTML of the tooltip to display 

the date of the current red circle and how many bugs are associated with that date. We 

then loop through that list of bugs and write out the ID of each bug.

svg.selectAll("circle")

 .data(nested_data)

 .enter().append("circle")
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 .attr("r", 3.5)

 .attr("fill", "red")

 .attr("cx", function(d) { return xScale(new Date(d.key)); })

 .attr("cy", function(d) { return yScale(d.values.length);})

 .on("mouseover", function(d){

 document.getElementById("tooltip").innerHTML = d.key + " " + d.values.

length + " bugs<br/>";

 for(x=0;x<d.values.length;x++){

 document.getElementById("tooltip").innerHTML += d.values[x].ID + "<br/>";

 }

 tooltip.style("visibility", "visible");

 })

If we want to take this even further, we can create links for each bug ID that link 

back to the bug-tracking software, list descriptions of each bug, and if the bug-tracking 

software has an API to interface with, we can even have form fields that could let us 

update bug information right from this tooltip. Only our imagination and the tools 

available to us limit the possibilities of how far we can extend this concept.

Finally, we add a mousemove event handler to the red circles so that we can reposition 

the tooltip contextually whenever the users mouse over a red circle. To do this, we use 

the d3.mouse object to get the current mouse coordinates. We use these coordinates to 

simply reposition the tooltip with CSS. So we don’t cover the red circle with the tooltip, 

we offset the top property by 25 pixels and the left property by 75 pixels.

svg.selectAll("circle")

 .data(nested_data)

 .enter().append("circle")

 .attr("r", 3.5)

 .attr("fill", "red")

 .attr("cx", function(d) { return xScale(new Date(d.key)); })

 .attr("cy", function(d) { return yScale(d.values.length);})

 .on("mouseover", function(d){

  document.getElementById("tooltip").innerHTML = d.key + " " + d.values.

length + " bugs<br/>";

 for(x=0;x<d.values.length;x++){

 document.getElementById("tooltip").innerHTML += d.values[x].ID + "<br/>";
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 }

 tooltip.style("visibility", "visible");

 })

 .on("mousemove", function(){

  return tooltip.style("top", (d3.mouse(this)[1] + 25)+"px").style("left", 

(d3.mouse(this)[0] + 70)+"px");

 });

A tooltip should display when the mouse hovers over one of the red circles (see 

Figure 6-12).

The complete source code should now look like this:

<!DOCTYPE html>

<html>

<meta charset="utf-8">

<head>

<style>

body {

 font: 15px sans-serif;

}

Figure 6-12. Completed time series with rollover shown
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.trendLine {

 fill: none;

 stroke: #CC0000;

 stroke-width: 1.5px;

}

.axis path{

 fill: none;

 stroke: #000;

 shape-rendering: crispEdges;

}

.tooltip{

        opacity: .75;

        text-align:center;

        font-size:12px;

        width:100px;

        padding:5px;

        border:1px solid #a8b6ba;

        background-color:#fff;

        margin-bottom:5px;

        border-radius: 19px;

        -moz-border-radius: 19px;

        -webkit-border-radius: 19px;

}

</style>

</head>

<body>

        <script src="d3.v3.js"></script>

<script>

var margin = {top: 20, right: 20, bottom: 30, left: 50},

 width = 960 - margin.left - margin.right,

 height = 500 - margin.top - margin.bottom;

var parseDate = d3.time.format("%m/%d/%y").parse;

var xScale = d3.time.scale()

 .range([0, width]);

var yScale = d3.scale.linear()

 .range([height, 0]);
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var xAxis = d3.svg.axis()

         .scale(xScale)

         .orient("bottom");

var yAxis = d3.svg.axis()

         .scale(yScale)

         .orient("left");

var line = d3.svg.line()

 .x(function(d) { return xScale(new Date(d.key)); })

 .y(function(d) { return yScale(d.values.length); });

var tooltip = d3.select("body")

 .append("div")

 .attr("class", "tooltip")

 .attr("id", "tooltip")

 .style("position", "absolute")

 .style("z-index", "10")

 .style("visibility", "hidden");

var svg = d3.select("body").append("svg")

 .attr("width", width + margin.left + margin.right)

 .attr("height", height + margin.top + margin.bottom)

        .append("g")

 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

d3.csv("https://jonwestfall.com/data/allbugsOrdered.csv", function(error, 

data) {

        data.forEach(function(d) {

                d.Date = parseDate(d.Date);

        });

 nested_data = d3.nest()

                .key(function(d) { return d.Date; })

                .entries(data);

          xScale.domain(d3.extent(nested_data, function(d) { return new 

Date(d.key); }));

          yScale.domain(d3.extent(nested_data, function(d) { return 

d.values.length; }));

         svg.append("g")

         .attr("transform", "translate(0," + height + ")")
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         .call(xAxis)

         .attr("class", "axis");

                svg.append("g")

                 .call(yAxis)

         .attr("class", "axis");

                svg.append("path")

                 .datum(nested_data)

                 .attr("d", line)

         .attr("class", "trendLine");

                svg.selectAll("circle")

                 .data(nested_data)

                 .enter().append("circle")

                 .attr("r", 3.5)

                 .attr("fill", "red")

                 .attr("cx", function(d) { return xScale(new Date(d.key)); })

                  .attr("cy", function(d) { return yScale(d.values.

length);})

                          .on("mouseover", function(d){

                                  document.getElementById("tooltip").

innerHTML = d.key + " " + d.values.length 

+ " bugs<br/>";

                                 for(x=0;x<d.values.length;x++){

                                          document.getElementById 

("tooltip").innerHTML += 

d.values[x].ID + "<br/>";

                               }

                                tooltip.style("visibility", "visible");

                })

                        .on("mousemove", function(){

                                 return tooltip.style("top", (d3.mouse(this)

[1] + 25)+"px").style("left", (d3.

mouse(this)[0] + 70)+"px");

 });

});
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</script>

</body>

</html>

 Summary
This chapter explored time series plots, both philosophically and in the context of using 

them to track bug creation over time. We exported the raw bug data from the bug- 

tracking software of choice and imported it into R to scrub and analyze.

Within R, we looked at different ways we could model and visualize the data, looking 

at both aggregate and granular details such as how the new bugs contribute to a running 

total over time or when new bugs are introduced over time. This is especially valuable 

when we can put context to the dates we are looking at.

We then read the data into D3 and created an interactive time series that allowed us 

to drill down from the high-level trend data into very granular details around each bug 

created.

The next chapter explores creating bar charts and how to use them to identify areas 

of focus and improvement.
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CHAPTER 7

Bar Charts
Chapter 6 explored using time series charts to look at defect data over time, and this 

chapter looks at bar charts, which display ordinal or ranked data relative to a specific 

data set. They usually consist of an x- and y-axis and have bars or colored rectangles to 

indicate values of categories.

William Playfair created the bar chart in the first edition of The Commercial and 

Political Atlas in 1786 to show Scotland’s import and export data to and from different 

parts of the world (see Figure 7-1). He created it out of necessity; the other charts in 

the atlas were time series charts demonstrating hundreds of years’ worth of trade data, 

but for Scotland, there was only one year’s worth of data. While using the time series 

chart, Playfair saw it as an inferior visualization; a compromise with resources on hand 

because it “does not comprehend any portion of time, and it is much inferior in utility to 

those that do” (Playfair, 1786, p. 101).

https://doi.org/10.1007/978-1-4842-7202-2_7#DOI
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Playfair initially thought so little of his invention that he didn’t bother to include it in 

the subsequent second and third editions of the atlas. He went on to envision a different 

way to show parts of a whole; in doing so, he invented the pie chart for his Statistical 

Breviary published in 1801.

The bar chart is a great way to demonstrate ranked data not only because bars are 

a clear way to show differences in value but the pattern can also be extended to include 

more data points by using different types of bar charts such as stacked bar charts and 

grouped bar charts.

 Standard Bar Chart
Let’s take data that you are already familiar with—the bugsBySeverity data from the last 

chapter:

head(bugsBySeverity)

Figure 7-1. William Playfair’s bar chart showing Scotland’s import and export data
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          Blocker Minor Moderate

  1/11/21       0     1        0

  1/12/20       0     1        0

  1/12/21       1     2        0

  1/13/20       1     0        0

  1/17/21       2     0        0

  1/18/21       0     0        1

You can create a new list with a sum of each bug type and visualize the totals in a bar 

chart like so:

totalBugsBySeverity <- c(sum(bugsBySeverity[,1]), sum(bugsBySeverity[,2]), 

sum(bugsBySeverity[,3]))

barplot(totalBugsBySeverity, main="Total Bugs by Severity")

axis(1, at=1: length(totalBugsBySeverity), lab=c("Blocker", "Critical", 

"Minor"))

This code produces the chart shown in Figure 7-2.

Figure 7-2. Bar chart of bugs by severity
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 Stacked Bar Chart
Stacked bar charts allow us to show subsections or segments within categories. Suppose 

you use the bugsBySeverity time series data and want to look at the breakdown of the 

criticality of the new bugs opened each day:

t(bugsBySeverity)

    1/11/21 1/12/20 1/12/21 1/13/20 1/17/21 1/18/21 1/2/21 1/21/20 1/22/20

Blocker   0       0       1       1       2       0      0       1       1

Minor     1       1       2       0       0       0      1       0       0

Moderate  0       0       0       0       0       1      0       0       0

    1/24/20 1/24/21 1/25/20 1/27/21 1/29/21 1/3/20 1/4/20 1/5/20 1/5/21

Blocker   0       0       1       0       0      0      0      0      0

Minor     1       1       0       1       0      1      1      1      1

Moderate  0       0       0       0       1      0      0      0      0

    1/9/20 10/1/20 10/10/20 10/15/20 10/16/20 10/18/20 10/21/20 10/25/20

Blocker  1       0        0        1        0        0        0        1

Minor    0       1        0        0        1        0        1        0

Moderate 0       0        1        0        0        2        1        0

    10/26/20 10/29/20 10/30/20 10/6/20 11/17/20 11/18/20 11/19/20 11/21/20

Blocker    0        1        0       0        0        1        0        0

Minor      0        0        1       1        1        0        1        1

Moderate   1        1        0       0        0        0        0        0

    11/23/20 11/26/20 11/4/20 11/8/20 12/14/20 12/15/20 12/17/20 12/21/20

Blocker    0        2       1       1        1        1        0        1

Minor      1        0       1       0        0        0        1        0

Moderate   0        0       0       0        1        0        0        0

    12/22/20 12/23/20 12/24/20 12/27/20 12/29/20 12/3/20 12/31/20 2/12/21

Blocker    1        0        1        0        0       1        0       1

Minor      0        1        0        0        1       0        1       0

Moderate   1        0        0        1        0       0        0       0
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    2/13/21 2/14/20 2/15/20 2/15/21 2/16/20 2/22/21 2/24/20 2/25/21

Blocker   0       1       0       1       1       1       1       0

Minor     0       0       1       0       0       1       0       1

Moderate  1       0       0       0       0       0       0       0

    2/26/21 2/28/21 2/3/21 2/4/21 2/8/21 3/1/20 3/1/21 3/11/21 3/14/21

Blocker   1       1      1      1      1      0      1       2       0

Minor     1       0      0      0      0      0      0       1       1

Moderate  0       0      0      0      0      2      0       0       0

    3/17/21 3/2/20 3/2/21 3/22/20 3/23/21 3/24/20 3/25/21 3/26/20 3/28/20

Blocker   1      1      1       1       0       0       1       0       1

Minor     0      0      0       1       1       0       0       1       0

Moderate  0      0      0       0       0       1       0       0       0

    3/3/21 3/31/20 3/31/21 3/6/21 3/7/20 3/7/21 4/12/21 4/13/20 4/15/21

Blocker  1       0       1      1      0      0       0       0       0

Minor    0       0       0      0      0      0       0       1       0

Moderate 0       1       0      0      1      1       1       0       1

    4/18/21 4/19/21 4/20/20 4/25/20 4/26/21 4/27/20 4/29/21 4/4/20 4/5/21

Blocker   0       0       1       0       1       1       1      0      2

Minor     2       1       0       1       0       0       0      1      1

Moderate  0       0       0       0       0       0       0      0      0

    4/7/20 4/8/20 5/1/20 5/10/20 5/11/21 5/12/20 5/14/21 5/16/21 5/17/20

Blocker  1      1      2       0       1       1       0       1       1

Minor    0      0      0       1       0       1       1       0       0

Moderate 0      1      0       0       0       0       0       0       0

    5/17/21 5/2/21 5/20/20 5/20/21 5/22/20 5/24/21 5/25/20 5/26/21 5/27/20

Blocker   1      1       0       1       2       0       0       1       1

Minor     0      0       0       0       0       1       0       0       0

Moderate  0      0       1       1       0       0       1       0       0

    5/27/21 5/28/20 5/28/21 5/29/21 5/30/20 5/31/20 5/6/20 5/8/20 6/11/20

Blocker  1       0       1       2       1       1      0      1       1

Minor    0       1       0       0       0       0      1      0       0

Moderate 0       0       0       0       0       0      0      0       0
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    6/11/21 6/14/20 6/16/21 6/2/21 6/20/20 6/28/20 6/3/20 6/3/21 6/4/20

Blocker   1       1       2      1       1       1      0      1      0

Minor     0       0       0      0       0       0      0      0      1

Moderate  0       0       0      0       0       0      1      0      0

    6/4/21 6/6/21 6/7/20 6/7/21 6/8/21 6/9/21 7/14/20 7/18/20 7/2/20

Blocker  0      1      0      1      0      0       1       2      0

Minor    1      0      1      0      1      1       0       0      1

Moderate 0      0      1      0      0      0       0       0      0

    7/22/20 7/23/20 7/25/20 7/28/20 7/29/20 7/9/20 8/10/20 8/17/20 8/2/20

Blocker   1       0       0       1       0      0       0       0      0

Minor     0       1       0       0       1      1       1       0      1

Moderate  0       0       1       0       0      0       0       2      0

    8/21/20 8/22/20 8/23/20 8/24/20 8/26/20 8/27/20 8/28/20 8/29/20 8/3/20

Blocker   1       0       0       2       1       0       0       1      0

Minor     0       0       1       0       0       1       1       0      1

Moderate  0       1       0       0       0       0       0       0      0

    8/6/20 9/10/20 9/11/20 9/14/20 9/16/20 9/2/20 9/21/20 9/8/20

Blocker  1       1       1       0       0      0       0      0

Minor    0       0       0       0       0      1       1      0

Moderate 0       0       0       1       1      0       0      1

You can represent the following data with a stacked bar chart, as shown in Figure 7-3:

barplot(t(bugsBySeverity), col=c("#CCCCCC", "#666666", "#AAAAAA"))

legend("topleft", inset=.01, title="Legend", c("Blocker", "Criticals", 

"Minors"), fill=c("#CCCCCC", "#666666", "#AAAAAA"))

Chapter 7  Bar Charts



191

The total bugs are represented by the full height of the bar, and the colored segments 

of each bar represent the criticality of the bugs. Stacked bar charts allow us to show 

nuance in our data, although one may want to reduce the number of dates to get a 

clearer picture when visualizing.

 Grouped Bar Chart
Grouped bar charts allow us to show the same nuance as stacked bar charts, but instead 

of placing the segments on top of each other, we split them into side-by-side groupings. 

Figure 7-4 shows that each date on the x-axis has three bars associated with it, one for 

each criticality category:

barplot(t(bugsBySeverity), beside=TRUE, col=c("#CCCCCC", "#666666", 

"#AAAAAA"))

legend("topleft", inset=.01, title="Legend", c("Blocker", "Criticals", 

"Minors"), fill=c("#CCCCCC", "#666666", "#AAAAAA"))

Figure 7-3. Stacked bar chart of bugs by severity and date. The bars are not all of 
the same height, since the total number of bugs each day differs
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At a glance, it may appear that Figures 7-3 and 7-4 are identical, due to the density of 

the data. To avoid this, we can use the following code to reduce the number of data points 

to just show us five days’ worth of data. Try using both snippets to see the changes.

barplot(t(bugsBySeverity[1:10,]), col=c("#CCCCCC", "#666666", "#AAAAAA"))

legend("topleft", inset=.01, title="Legend", c("Blocker", "Criticals", 

"Minors"), fill=c("#CCCCCC", "#666666", "#AAAAAA"))

versus

barplot(t(bugsBySeverity[1:10,]), beside=TRUE, col=c("#CCCCCC", "#666666", 

"#AAAAAA"))

legend("topleft", inset=.01, title="Legend", c("Blocker", "Criticals", 

"Minors"), fill=c("#CCCCCC", "#666666", "#AAAAAA"))

 Visualizing and Analyzing Production Incidents
If you work on a product that gets used by someone—an end user, a consuming service, 

or even an internal customer—you most likely have experienced a production incident. 

Production incidents occur when some part of an application misbehaves for a user in 

production. It is very much like a bug, but it is a bug that is experienced and reported by 

your customer.

Figure 7-4. Grouped bar chart of bugs by severity and date
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Just like bugs, production incidents are normal and expected results of software 

development. There are three main things to think about when talking about incidents:

• Severity, or how impactful is the error being reported: There is a 

big difference between a site outage and a small layout error.

• Frequency, or how often incidents are occurring or recurring: If 

your web app is riddled with issues, your customer experience, your 

brand, and your regular flow of work are all affected.

• Duration, or how long individual incidents linger: The longer they 

linger, the more customers are affected, and the worse the impact on 

your brand.

Handling production incidents is a big part of operationalizing your products and 

maturing your organization. Depending on how severe the incidents are, they can be 

disruptive to your regular body of work; the team might need to stop everything and 

work on a fix for the issue. Lesser-priority items can be queued and introduced to the 

regular body of work alongside regular feature work.

Just as important as handling production incidents is being able to analyze trends in 

production incidents to identify problem areas. Problem areas are usually features or sections 

that have frequent issues in production. Once we have identified problem areas, we can do root 

cause analysis and potentially start to build proactive scaffolding around these areas.

Note Proactive scaffolding is a term I have coined that describes building 
failovers or additional safety rails to prevent issues in problem areas from 
recurring. proactive scaffolding can be anything from detecting when users are 
close to capacity limits (such as the browser cookie limit or application heap size 
and correcting before an issue happens) to noting performance issues with  
 third- party assets and intercepting and optimizing them before they are presented 
to a client.

Another interesting way to handle production incidents is how Heroku used to 

handle them in the past: putting them up on a timeline along with a visualization of 

month-over- month uptime and making it publicly available. Heroku’s production 

incident timeline was available at https://status.heroku.com/; see Figure 7-5.

Chapter 7  Bar Charts

https://status.heroku.com/;


194

Figure 7-5. Heroku status page
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GitHub also used to have a great status page that visualizes key metrics around 

their performance and uptime (see Figure 7-6). Ironically, they’ve now switched to the 

timeline approach that Heroku abandoned (see Figure 7-7, from www.githubstatus.

com/history).
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Figure 7-6. GitHub status page

Chapter 7  Bar Charts



197

For our purposes, this chapter uses bar charts to look at production incidents by 

feature to start to identify problem areas within our own products.

 Plotting Data on a Bar Chart with R
If we want to plot out our production incidents, we must first get an export of the 

data, just as we needed to do for bugs. Because production incidents are generally 

single-hit items, companies usually use a range of methods to track them, from 

ticketing systems such as Jira (www.atlassian.com/software/jira/overview) to 

maintaining a spreadsheet of items, whatever works—as long as we can retrieve the 

raw data. (Jon has made sample data available here: http://jonwestfall.com/data/

productionincidents.csv.)

Once we have the raw data, it probably looks something like the following: a comma- 

separated flat list with columns for an ID, a date stamp, and a description. There also 

should be a column that lists the feature or section of the application in which the 

incident occurred.

Figure 7-7. GitHub’s timeline
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ID,DateOpened,DateClosed,Description,Feature,Severity

880373,5/22/21 10:14,5/25/21 11:52,Fwd: 2 new e-books Associate 

Editors,General Inquiry,1

837947,4/29/21 12:35,5/7/21 14:09,Fwd: New Resource to Post,General 

Inquiry,2

489036,4/23/21 14:38,4/27/21 9:00,STP ebook editor with finished 

book,General Inquiry,1

443617,1/25/21 17:43,1/26/21 8:49,New member - IRC Committee at STP,General 

Inquiry,2

911894,1/18/21 10:25,1/20/21 8:51,Fwd: Updates to International Relations 

Committee page,General Inquiry,1

974124,1/11/21 14:55,1/12/21 10:55,Fwd: New Resource to Post,General 

Inquiry,2

341352,1/2/21 10:51,1/5/21 16:26,New eBooks,eBook Publishing,1

Let’s read the raw data into R and store it in a variable called prodData:

> prodIncidentsFile <- "http://jonwestfall.com/data/productionincidents.csv";

> prodData <- read.table(prodIncidentsFile, sep=",", header=TRUE)

> prodData

      ID    DateOpened     DateClosed  Description           

    Feature           Severity

1 880373 5/22/21 10:14  5/25/21 11:52  Fwd: 2 new e-books Associate Editors 

    General Inquiry   1

2 837947 4/29/21 12:35   5/7/21 14:09  Fwd: New Resource to Post 

    General Inquiry   2

3 489036 4/23/21 14:38   4/27/21 9:00  STP ebook editor with finished book 

    General Inquiry   1

4 443617 1/25/21 17:43   1/26/21 8:49  New member - IRC Committee at STP 

    General Inquiry   2

5 911894 1/18/21 10:25   1/20/21 8:51  Fwd: Updates to International  

                                       Relations Committee page 

    General Inquiry   1

6 974124 1/11/21 14:55  1/12/21 10:55  Fwd: New Resource to Post 

    General Inquiry   2

7 341352  1/2/21 10:51   1/5/21 16:26  New eBooks  

    eBook Publishing  1

Chapter 7  Bar Charts



199

We want to group them by the Feature column so that we can chart feature totals. 

To do this, we use the aggregate() function in R. The aggregate() function takes an 

R object, a list to use as grouping elements, and a function to apply to the grouping 

elements. So suppose we call the aggregate() function, pass in the ID column as the 

R object, have it grouped by the Feature column, and have R get the length for each 

feature grouping:

prodIncidentByFeature <- aggregate(prodData$ID, by=list(Feature=prodData$Fe

ature), FUN=length)

This code creates an object that looks like the following:

> prodIncidentByFeature

           Feature x

1 eBook Publishing 1

2  General Inquiry 6

We can then pass this object into the barplot() function to get the chart shown in 

Figure 7-8.

barplot(prodIncidentByFeature$x)

Figure 7-8. Beginning a bar chart

Chapter 7  Bar Charts



200

This is a nice start and does tell a story, but it’s not very descriptive. Besides the fact 

that the x-axis isn’t labeled, the problem areas are obscured by not ordering the results.

 Ordering Results
Let’s use the order() function to order the results by the total count of each incident by 

feature:

prodIncidentByFeature <- prodIncidentByFeature[order(prodIncidentByFeature$x),]

We can then format the bar chart to highlight this ordering by layering the bars 

horizontally and rotating the text 90 degrees.

To rotate the text, we must change our graphical parameters using the par() 

function. Updating the graphical parameters has global implications, meaning that 

any chart that we create after updating inherits the changes, so we need to preserve 

the current settings and reset them after we create our bar chart. We store our current 

settings in a variable that we call opar:

opar <- par(no.readonly=TRUE)

Note If you are following along in an r command line, the previous line by itself 
does not generate anything; it just sets graphical parameters.

We then pass new parameters into the par() call. We can use the las parameter to 

format the axis. The las parameter accepts the following values:

par(las=3)

• 0 is the default behavior where the text is parallel to the axis.

• 1 explicitly makes the text horizontal.

• 2 makes the text perpendicular to the axis.

• 3 explicitly makes the text vertical.

We then call barplot() again, but this time pass in the parameter horiz=TRUE, to 

have R draw the bars horizontally instead of vertically:
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barplot(prodIncidentByFeature$x, xlab="Number of Incidents", names.ar

g=prodIncidentByFeature$Feature, horiz=TRUE, space=1, cex.axis=0.6, cex.
names=0.8, main="Production Incidents by Feature", col= "#CCCCCC")

And, finally, we restore the saved settings so that future charts don't 

inherit this chart's settings:

> par(opar)

This code produces the visualization shown in Figure 7-9.

From this chart, you can see that the biggest problem area is the category labeled 

General Inquiry, followed by eBook Publishing.

Figure 7-9. Bar chart of production incidents by feature
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 Creating a Stacked Bar Chart
How severe are the issues around these features? Let’s next create a stacked bar chart to 

see the breakdown of severity for each production incident. To do that, we must create 

a table in which we break down our production incidents by feature and by severity. We 

can use the table() function for this, as we did for bugs in the last chapter:

prodIncidentByFeatureBySeverity <- table(factor(prodData$Feature),prodData$

Severity)

This code creates a variable formatted as shown in Figure 7-10, with rows 

representing each feature and columns representing each level of severity:

prodIncidentByFeatureBySeverity

                   1 2

  eBook Publishing 1 0

  General Inquiry  3 3

opar <- par(no.readonly=TRUE)

par(las=3, mar=c(5,5,5,5))

barplot(t(prodIncidentByFeatureBySeverity), xlab="Number of Incidents", 

names.arg=rownames(prodIncidentByFeatureBySeverity), horiz=TRUE, space=1, 

cex.axis=0.6, cex.names=0.8, main="Production Incidents by Feature", 

col=c("#CCCCCC", "#666666", "#AAAAAA", "#333333"))

legend("bottom", inset=.01, title="Legend", c("Sev1", "Sev2"), 

fill=c("#CCCCCC", "#666666"))

par(opar)
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Interesting! We lost our ordering, but that’s because we have a number of new 

data points to choose from. High-level aggregates are less relevant for this chart; more 

important is the breakdown of severity.

 Bar Charts in D3
So now you know the benefits of having bar charts to aggregate data at a high level and 

of getting the granular breakdown that stacked bar charts can expose. Let’s switch gears 

and use D3 to see how to create a high-level bar chart that allows us to drill into each bar 

to see a granular representation of the data at runtime.

We start by creating a bar chart in D3, version 3, and then create a stacked bar chart. 

When our users mouse over the bar chart, we will overlay the stacked bar chart to show 

how the data is broken down in real time.

Figure 7-10. Stacked bar chart of production incidents by feature and by severity
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 Creating a Vertical Bar Chart
Because we made a horizontal bar chart in D3 back in Chapter 4, we will now make a 

vertical bar chart. Following the same pattern that we established in previous chapters, 

we first create a base HTML skeletal structure that includes a link to the D3 version 3 

library. We use the same base style rules that we used in the last chapter for body text 

and axis path and an additional rule to color all elements within a bar class a dark gray.

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title></title>

<script src="d3.v3.js"></script>

<style type="text/css">

     body {

          font: 15px sans-serif;

     }

     .axis path{

          fill: none;

          stroke: #000;

          shape-rendering: crispEdges;

     }

     .bar {

          fill: #666666;

     }

</style>

</head>

<body></body>

</html>

Next, we create the script tag to hold all the charting code and the initial set of 

variables to hold the sizing information: the base height and width, D3 scale objects for 

the x- and y-coordinate information, an object to hold the margin information, and an 

adjusted height value that takes the top and bottom margins out of the total height:
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<script>

var w = 960,

    h = 500,

    x = d3.scale.ordinal().rangeRoundBands([0, w]),

    y = d3.scale.linear().range([0, h]),

    z = d3.scale.ordinal().range(["lightpink", "darkgray", "lightblue"])

    margin = {top: 20, right: 20, bottom: 30, left: 40},

    adjustedHeight = 500 - margin.top - margin.bottom;

</script>

We next create the x-axis object. Remember from previous chapters that the axis is 

not yet drawn, so we need to call it later within the Scalable Vector Graphics (SVG) tag 

that we will create to draw the axis:

var xAxis = d3.svg.axis()

    .scale(x)

    .orient("bottom");

Let’s draw the SVG container to the page. This will be the parent container for 

everything else that we will draw to the page.

var svg = d3.select("body").append("svg")

    .attr("width", w)

    .attr("height", h)

  .append("g")

The next step is to read in the data. We will use the same data source as our R 

example: the flat file productionIncidents.txt. We can read this in using the d3.csv() 

function to read in and parse the file. Once the contents of the file are read in, they are 

stored in the variable data, but if any error occurs, we will store the error details in a 

variable that we call error.

d3.csv("http://jonwestfall.com/data/productionincidents.csv", 

function(error, data) {

      }

Within the scope of this d3.csv() function is where we will put the majority of our 

remaining functionality because that functionality depends on having the data proceed.
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Let’s aggregate the data by feature. To do this, we use the d3.nest() function and set 

the key to the Feature column:

nested_data = d3.nest()

     .key(function(d) { return d.Feature; })

     .entries(data);

This code creates an array of objects.

Within this array, each object has a key that lists the feature and an array of objects 

that list each production incident.

We use this data structure to create the core bar chart. We make a function to do this:

function barchart(){

}

In this function, we set the transform attribute of the svg element, which sets the 

coordinates to contain the image that will be drawn. In this case, we constrain it to the 

margin left and top values:

svg.attr("transform", "translate(" + margin.left + "," + margin.top + ")");

We also create scale objects for the x- and y-axes. For bar charts, we generally use 

ordinal scales for the x-axis because they are used for discrete values such as categories. 

More information about ordinal scales in D3 can be found in the documentation at 

https://github.com/mbostock/d3/wiki/Ordinal- Scales.

We also create scale objects to map the data to the bounds of the chart:

var xScale = d3.scale.ordinal()

     .rangeRoundBands([0, w], .1);

var yScale = d3.scale.linear()

     .range([h, 0]);

xScale.domain(data.map(function(d) { return d.key; }));

yScale.domain([0, d3.max(nested_data, function(d) { return d.values. 

length; })]);

We next need to draw the bars. We create a selection based on the Cascading Style 

Sheets (CSS) class that we assign to the bars. We bind the nested_data to the bars, create 

SVG rectangles for each key value in nested_data, and assign the bar class to each 
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rectangle; we’ll define the class style rule soon. We set the x coordinate of each bar to the 

ordinal scale and set both the y coordinate and the height attribute to the linear scale.

We also add a mouseover event handler and put a call to a function that we will soon 

create called transitionVisualization(). This function transitions the stacked bar 

chart that we will make over the bar chart when we mouse over one of the bars.

svg.selectAll(".bar")

     .data(nested_data)

     .enter().append("rect")

     .attr("class", "bar")

     .attr("x", function(d) { return xScale(d.key); })

     .attr("width", xScale.rangeBand())

     .attr("y", function(d) { return yScale(d.values.length) - 50; })

     .attr("height", function(d) { return h - yScale(d.values.length); })

     .on("mouseover", function(d){

          transitionVisualization (1)

     })

Let’s also add in a call to a function that we will create called drawAxes():

drawAxes()

The complete barchart() function looks like this:

  function barchart(){

           svg.attr("transform", "translate(" + margin.left + "," + margin.

top + ")");

          var xScale = d3.scale.ordinal()

              .rangeRoundBands([0, w], .1);

          var yScale = d3.scale.linear()

              .range([h, 0]);

      xScale.domain(nested_data.map(function(d) { return d.key; }));

       yScale.domain([0, d3.max(nested_data, function(d) { return d.values.

length; })]);

      svg.selectAll(".bar")

          .data(nested_data)

        .enter().append("rect")

          .attr("class", "bar")
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          .attr("x", function(d) { return xScale(d.key); })

          .attr("width", xScale.rangeBand())

          .attr("y", function(d) { return yScale(d.values.length) - 50; })

          .attr("height", function(d) { return h - yScale(d.values.length); })

          .on("mouseover", function(d){

                           transitionVisualization (1)

          })

    drawAxes()

  }

Let’s create the drawAxes() function. We place this function outside the scope of the 

d3.csv() function, out at the root of the script tag.

For this chart, let’s go with a little more of a minimalist approach and draw only the 

x-axis. Just like the last chapter, we draw SVG g elements and call the xAxis object:

function drawAxes(){

     svg.append("g")

          .attr("class", "x axis")

          .attr("transform", "translate(0," + adjustedHeight + ")")

          .call(xAxis);

}

This draws the x-axis that gives the bar chart its category labels.

 Creating a Stacked Bar Chart
Now that we have a bar chart, let’s create a stacked bar chart. First, let’s shape the data. 

We want an array of objects in which each object represents a feature and has a count of 

total incidents for each level.

Let’s start with a new array called grouped_data:

var grouped_data = new Array();

Let’s iterate through nested_data because nested_data already has taken care of 

grouping by feature:

nested_data.forEach(function (d) {

}
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Within each pass through nested_data, we create a temporary object and iterate 

through each incident within the values array:

tempObj = {"Feature": d.key, "Sev1":0, "Sev2":0, "Sev3":0, "Sev4":0};

     d.values.forEach(function(e){

     }

Within each iteration in the values array, we test the severity of the current incident 

and increment the appropriate property of the temporary object:

if(e.Severity == 1)

     tempObj.Sev1++;

else if(e.Severity == 2)

     tempObj.Sev2++

else if(e.Severity == 3)

     tempObj.Sev3++;

else if(e.Severity == 4)

     tempObj.Sev4++;

The complete code to create the grouped_data array looks like the following:

nested_data.forEach(function (d) {

     tempObj = {"Feature": d.key, "Sev1":0, "Sev2":0, "Sev3":0, "Sev4":0};

     d.values.forEach(function(e){

          if(e.Severity == 1)

               tempObj.Sev1++;

          else if(e.Severity == 2)

               tempObj.Sev2++

          else if(e.Severity == 3)

               tempObj.Sev3++;

          else if(e.Severity == 4)

               tempObj.Sev4++;

     })

     grouped_data[grouped_data.length] = tempObj

});
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Perfect! Next, we create a function in which we draw the stacked bar chart within the 

scope of the d3.csv() function:

function stackedBarChart(){

}

Here’s where it gets interesting. Using the d3.layout.stack() function, we 

transpose our data so that we have an array in which each index represents one of the 

levels of severity and contains an object for each feature that has a count of each incident 

for the respective level of severity:

var sevStatus = d3.layout.stack()(["Sev1", "Sev2", "Sev3", "Sev4"].

map(function(sevs)

     {

          return grouped_data.map(function(d) {

          return {x: d.Feature, y: +d[sevs]};

    });

  }));

We next use sevStatus to create domain maps for the x and y values of the bar 

segments that we will draw:

x.domain(sevStatus[0].map(function(d) { return d.x; }));

y.domain([0, d3.max(sevStatus[sevStatus.length - 1], function(d) { return 

d.y0 + d.y; })]);

Next, we draw SVG g elements for each index in the sevStatus array. They serve as 

containers in which we draw the bars. We bind sevStatus to these grouping elements 

and set the fill attribute to return one of the colors from the array of colors.

var sevs = svg.selectAll("g.sevs")

     .data(sevStatus)

     .enter().append("g")

     .attr("class", "sevs")

     .style("fill", function(d, i) { return z(i); });

Finally, we draw the bars within the groupings that we just created. We bind a 

generic function to the data attribute of the bars that just passes through whatever data 

is passed to it; this inherits from the SVG groupings.
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We draw the bars with the opacity set to 0, so the bars are not initially visible. We also 

attach mouseover and mouseout event handlers, to call transitionVisualization()—

passing 1 when the mouseover event is fired and 0 when the mouseout event is fired (we 

will flesh out the functionality of transitionVisualization() very soon).

var rect = sevs.selectAll("rect")

     .data(function(data){ return data; })

     .enter().append("svg:rect")

     .attr("x", function(d) { return x(d.x) + 13; })

     .attr("y", function(d) { return -y(d.y0) - y(d.y) + adjustedHeight; })

     .attr("class", "groupedBar")

     .attr("opacity", 0)

     .attr("height", function(d) { return y(d.y) ; })

     .attr("width", x.rangeBand() - 20)

     .on("mouseover", function(d){

          transitionVisualization (1)

     })

     .on("mouseout", function(d){

     transitionVisualization (0)

     });

The complete stacked bar chart code should look like the following

function groupedBarChart(){

      var sevStatus = d3.layout.stack()(["Sev1", "Sev2", "Sev3", "Sev4"].

map(function(sevs)

     {

          return grouped_data.map(function(d) {

          return {x: d.Feature, y: +d[sevs]};

    });

  }));

     x.domain(sevStatus[0].map(function(d) { return d.x; }));

      y.domain([0, d3.max(sevStatus[sevStatus.length - 1], function(d) { 

return d.y0 + d.y; })]);

  // Add a group for each sev category.

     var sevs = svg.selectAll("g.sevs")

          .data(sevStatus)
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          .enter().append("g")

          .attr("class", "sevs")

          .style("fill", function(d, i) { return z(i); })

          .style("stroke", function(d, i) { return d3.rgb(z(i)).darker(); });

     var rect = sevs.selectAll("rect")

          . data(function(data){ return data; })

          .enter().append("svg:rect")

          .attr("x", function(d) { return x(d.x) + 13; })

          . attr("y", function(d) { return -y(d.y0) - y(d.y) + 

adjustedHeight; })

           .attr("class", "groupedBar")

          .attr("opacity", 0)

          .attr("height", function(d) { return y(d.y) ; })

          .attr("width", x.rangeBand() - 20)

          .on("mouseover", function(d){

               transitionVisualization (1)

          })

          .on("mouseout", function(d){

          transitionVisualization (0)

          });

  }

 Creating an Overlaid Visualization
But we’re not quite done yet. We’ve been referencing this transitionVisualization() 

function, but we haven’t yet defined it. Let’s take care of that right now. Remember 

how we’ve been using it: when a user mouses over a bar in our bar chart, we call 

transitionVisualization() and pass in a 1. When a user mouses over a bar in our stacked 

bar chart, we also call transitionVisualization() and pass in a 1. But when a user mouses 

off a bar in the stacked bar chart, we call transitionVisualization() and pass in a 0.

So the parameter that we pass in sets the opacity of our stacked bar chart. Because we 

initially draw the stacked bar chart with the opacity at 0, we only ever see it when a user rolls 

over a bar in the bar chart, and it gets hidden again when the user rolls off of the bar.

To create this effect, we use a D3 transition. Transitions are much like tweens in 

other languages such as ActionScript 3. We create a D3 selection (in this case, we can 
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select all elements of class groupedBar), call transition(), and set the attributes of that 

selection that we want to change:

function transitionVisualization(vis){

     var rect = svg.selectAll(".groupedBar")

     .transition()

     .attr("opacity", vis)

}

We’ve now got our entire visualization, as can be seen in Figure 7-11.

The completed code looks like the following, and although it’s hard to demonstrate 

this functionality via a printed medium, you can see the working model on Jon’s website 

(available at https://jonwestfall.com/d3/ch7.d3.example.htm) or put the code onto 

a local web server and run it yourself:

<!DOCTYPE html>

<html>

  <head>

          <meta charset="utf-8">

    <title></title>

        <script src="d3.v3.js"></script>

Figure 7-11. Stacked bar chart of production incidents by feature and by severity
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        <style type="text/css">

        body {

          font: 15px sans-serif;

        }

        .axis path{

          fill: none;

          stroke: #000;

          shape-rendering: crispEdges;

        }

        .bar {

          fill: #666666;

        }

    </style>  </head>

  <body>

    <script type="text/javascript">

var w = 960,

    h = 500,

    x = d3.scale.ordinal().rangeRoundBands([0, w]),

    y = d3.scale.linear().range([0,h]),

    z = d3.scale.ordinal().range(["lightpink", "darkgray", "lightblue"])

    margin = {top: 20, right: 20, bottom: 30, left: 40},

    adjustedHeight = 500 - margin.top - margin.bottom;

        var xAxis = d3.svg.axis()

            .scale(x)

            .orient("bottom");

        var svg = d3.select("body").append("svg")

            .attr("width", w)

            .attr("height", h)

          .append("g")

        function drawAxes(){

          svg.append("g")

              .attr("class", "x axis")

              .attr("transform", "translate(0," + adjustedHeight + ")")

              .call(xAxis);

         }
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         function transitionVisuaization(vis){

                 var rect = svg.selectAll(".groupedBar")

                .transition()

                .attr("opacity", vis)

         }

         d3.csv("https://jonwestfall.com/data/productionincidents.csv", 

function(error, data) {

            nested_data = d3.nest()

                         .key(function(d) { return d.Feature; })

                         .entries(data);

                var grouped_data = new Array();

                //for stacked bar chart

                nested_data.forEach(function (d) {

                          tempObj = {"Feature": d.key, "Sev1":0, "Sev2":0, 

"Sev3":0, "Sev4":0};

                         d.values.forEach(function(e){

                                 if(e.Severity == 1)

                                 tempObj.Sev1++;

                                 else if(e.Severity == 2)

                                 tempObj.Sev2++

                                 else if(e.Severity == 3)

                                 tempObj.Sev3++;

                                 else if(e.Severity == 4)

                                 tempObj.Sev4++;

                         })

                         grouped_data[grouped_data.length] = tempObj

                });

function stackedBarChart(){

   var sevStatus = d3.layout.stack()(["Sev1", "Sev2", "Sev3", "Sev4"].

map(function(sevs) {

    return grouped_data.map(function(d) {

      return {x: d.Feature, y: +d[sevs]};

    });

  }));
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  x.domain(sevStatus[0].map(function(d) { return d.x; }));

   y.domain([0, d3.max(sevStatus[sevStatus.length - 1], function(d) { return 

d.y0 + d.y; })]);

  // Add a group for each sev category.

  var sevs = svg.selectAll("g.sevs")

      .data(sevStatus)

    .enter().append("g")

      .attr("class", "sevs")

      .style("fill", function(d, i) { return z(i); });

  var rect = sevs.selectAll("rect")

      .data(function(data){ return data; })

    .enter().append("svg:rect")

      .attr("x", function(d) { return x(d.x) + 13; })

      .attr("y", function(d) { return -y(d.y0) - y(d.y) + adjustedHeight; })

          .attr("class", "groupedBar")

          .attr("opacity", 0)

      .attr("height", function(d) { return y(d.y) ; })

      .attr("width", x.rangeBand() - 20)

          .on("mouseover", function(d){

                  transitionVisuaization(1)

          })

          .on("mouseout", function(d){

                  transitionVisuaization(0)

          });

  }

  function barchart(){

           svg.attr("transform", "translate(" + margin.left + "," + margin.

top + ")");

          var xScale = d3.scale.ordinal()

              .rangeRoundBands([0, w], .1);

          var yScale = d3.scale.linear()

              .range([h, 0]);

      xScale.domain(nested_data.map(function(d) { return d.key; }));

       yScale.domain([0, d3.max(nested_data, function(d) { return d.values.

length; })]);
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      svg.selectAll(".bar")

          .data(nested_data)

        .enter().append("rect")

          .attr("class", "bar")

          .attr("x", function(d) { return xScale(d.key); })

          .attr("width", xScale.rangeBand())

          .attr("y", function(d) { return yScale(d.values.length) - 50; })

          .attr("height", function(d) { return h - yScale(d.values.length); })

          .on("mouseover", function(d){

                           transitionVisuaization(1)

          })

        stackedBarChart()

    drawAxes()

  }

  barchart();

});

    </script>

  </body>

</html>

 Summary
This chapter looked at using bar charts to display ranked data in the context of 

production incidents. Because production incidents are essentially direct feedback from 

your user base around how your product is misbehaving or failing, managing production 

incidents is a critical piece of any mature engineering organization.

Managing production incidents isn’t simply about responding to issues as they 

arise, however; it is also about analyzing the data around your incidents: what areas of 

your application are breaking frequently, what unexpected patterns of use you see in 

production that could cause these recurring issues, how to build proactive scaffolding 

to prevent these and future issues. All these are questions you can answer only by fully 

understanding your product and your data. In this chapter, you took your first step 

toward that greater understanding.
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CHAPTER 8

Correlation Analysis 
with Scatter Plots
In the last chapter, you looked at using bar charts to analyze production incidents. You 

saw that bar charts are great for displaying the differences in a ranked data set, and you 

used this idea to identify areas in which issues recurred. You also used stacked bar charts 

to see the granular breakdown in the severity of production incidents.

This chapter looks at correlation analysis with scatter plots. Scatter plots are charts 

that plot two independent data sets on their own axes, displayed as points on a Cartesian 

grid (x and y coordinates). As you’ll see, scatter plots are used to try and identify 

relationships between the two data points.

Note Michael Friendly and Daniel Denis have published a thoughtful and 
thoroughly researched dissertation on the history of scatter plots, originally 
published by the Journal of the History of the Behavioral Sciences, Vol. 41, in 2005 
and available on Friendly’s website at www.datavis.ca/papers/friendly-
scat.pdf. This article is absolutely recommended reading because it tries to 
trace back the very first recorded scatter plots and the first time a chart was called 
a scatter plot and very deftly delineates the difference between a scatter plot and 
a time series (in other words, all time series are scatter plots with time as an axis 
while not all scatter plots are time series!).

https://doi.org/10.1007/978-1-4842-7202-2_8#DOI
http://www.datavis.ca/papers/friendly-scat.pdf
http://www.datavis.ca/papers/friendly-scat.pdf
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 Finding Relationships in Data
The pattern, or lack of a pattern, that the points form on a scatter plot indicates the 

relationship. At a very high level, relationships can be

• Positive correlation, in which one variable increases as the other 

increases. This is demonstrated by the dots forming a line trending 

diagonally upward from left to right (see Figure 8-1).

• Negative correlation, in which one variable increases as the other 

decreases. This is demonstrated by the dots forming a line trending 

downward from left to right (see Figure 8-2).

Figure 8-1. Scatter plot showing positive correlation between total phones in 
North America and Europe
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• No correlation, demonstrated (or not) by a scatter plot that has no 

discernible trend line (see Figure 8-3).

Figure 8-2. Scatter plot showing negative correlation between body weight and 
time passing (  for a person on a diet)
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Of course, simply identifying correlation between two data points or data sets does 

not imply that there is direct cause in the relationship—hence the convention that 

correlation does not imply causation. For example, see the negative correlation chart 

in Figure 8-2. If we were to assume direct causation between the two axes—weight and 

number of days—we would be assuming that the passing of time caused body weight to 

decrease.

Although scatter plots are great for analyzing the relationship between two sets of 

data, there is a related pattern that can be used to introduce a third set of data as well. 

This visualization is called a bubble chart, and it uses the radius of the points in a scatter 

plot to expose the third dimension of data.

Figure 8-3. Scatter plot showing no correlation between number of accidental 
deaths in the United States over years
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See Figure 8-4 for a bubble chart that shows the correlation in length of tooth growth 

in guinea pigs and doses of vitamin C administered. The third data point is the method 

of delivery: either by vitamin supplement or by orange juice. It is added as the radius of 

each point in the graphic; the larger circle is the vitamin supplement, and the smaller 

circle is orange juice.

For our purposes in this chapter, we will use scatter plots and bubble charts to look 

at the implied relationship that team velocity has with our other areas of focus, in effect 

doing correlation analysis on team dynamics. We will compare things like team size and 

velocity, velocity and production incidents, and so on.

Figure 8-4. Correlation of tooth growth and doses of vitamin C in guinea pigs, 
both by vitamin supplement and by orange juice
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 Introductory Concepts of Agile Development
Let’s start by introducing some preliminary concepts of Agile development. If you are 

already versed in Agile, this section will be a bit of a review. There are many flavors of 

Agile development, but the high-level concepts that most have in common are the ideas 

of time boxing a body of work. Time boxing enables the team to focus on one thing and 

finish it, allowing the stakeholders to quickly give feedback on what was completed. 

This short feedback loop allows for teams and stakeholders to pivot, or react and change 

direction as requirements and even industries change.

This span of time that the team works on the body of work—whether it is one 

week, three weeks, or what have you—is called a sprint. At the end of a sprint, the team 

doing the work should have releasable code, though releasing after each sprint is not a 

requirement.

Sprints begin with a planning session in which teams define the body of work, 

and sprints end with a review session in which the team goes over the body of work 

completed. Periodically during a sprint, the team grooms new work to complete; it 

defines the work in user stories that list acceptance criteria. It is these user stories that 

get prioritized and committed to in the planning sessions held at the beginning of each 

sprint.

See Figure 8-5 for a high-level workflow of this process.

User stories have story points associated with them. Story points are estimates of 

the level of complexity for the story and are usually a numeric value. As teams complete 

sprints, they begin to form a consistent velocity. Velocity is the average amount of story 

points that a team will complete in a sprint.

Velocity is important because you use it to estimate how much your team can 

complete at the start of each sprint and to project out how much of your backlog of work 

the team may be able to complete from your roadmap over the course of the year.

Figure 8-5. High-level workflow for Agile development
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There are a number of tools available to manage Agile projects, such as Rally (www.

rallydev.com/) or Greenhopper from Atlassian (www.atlassian.com/software/

greenhopper/overview), the same company that makes Jira and Confluence. Whatever 

tool you use should provide the ability to export your data, including user point counts 

for each sprint.

 Correlation Analysis
To begin the analysis, let’s export a totaled sum of story points for each sprint along with 

the team name. We should compile all these data points into a single file that we will 

name teamvelocity.txt. Our file should look something like the following, which shows 

data for the 12.1 and 12.2 sprints for the teams named Red and Gold (arbitrary names for 

teams that are working on the same product just with different bodies of work):

Sprint,TotalPoints,Team

12.1,25,Gold

12.1,63,Red

12.2,54,Red

...

Let’s add an additional column in there to represent the total team members on each 

team for each sprint. The data should now look like so:

Sprint,TotalPoints,TotalDevs,Team

12.1,25,6,Gold

12.1,63,10,Red

12.2,54,9,Red

...

We have also made this sample data set available, with more points, here: https://

jonwestfall.com/data/teamvelocity.txt.

Excellent! Let’s now read this into R, changing the path in the first line to be where 

you have placed it:

tvFile <- "/Applications/MAMP/htdocs/teamvelocity.txt"

teamvelocity <- read.table(tvFile, sep=",", header=TRUE)
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 Creating a Scatter Plot
Now create a scatter plot using the plot() function to compare the total points that the 

teams completed in each sprint against how many members were on the team for each 

sprint. We pass teamvelocity$TotalPoints and teamvelocity$TotalDevs as the first 

two parameters, set the type to p, and give meaningful labels for the axes:

plot(teamvelocity$TotalPoints,teamvelocity$TotalDevs, type="p", ylab="Team 

Members", xlab="Velocity", bg="#CCCCCC", pch=21)

This creates the scatter plot that we can see in Figure 8-6; we can see that as we 

add more members to a team, the number of story points that they can complete in an 

iteration, or sprint, also increases.

Figure 8-6. Correlation of team velocity and total team members
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 Creating a Bubble Chart
If we want a greater insight into the data that we have so far, for example, to show which 

points belong to which team, we could visualize that information with a bubble chart. 

We can create bubble charts using the symbols() function. We pass in TotalPoints and 

TotalDevs into symbols(), just as we did for plot(), but we also pass in the Team column 

into a parameter named circles. This specifies the radius of the circle to draw on the chart. 

Because for our example Team is a string, R converts it to a factor. We also set the color of the 

circle with the bg parameter and the stroke color of the circle with the fg parameter.

symbols(teamvelocity$TotalPoints, teamvelocity$TotalDevs, circles=as.

factor(teamvelocity$Team), inches=0.35, fg="#000000", bg="#CCCCCC", 

ylab="Team Members", xlab="Velocity")

The previous R code should produce a bubble chart that looks like Figure 8-7.

Figure 8-7. Correlation of team velocity, total team members, with size of bubble 
indicating team
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 Visualizing Bugs
The bubble chart shown in Figure 8-7 is of limited use, mainly because the team 

breakdown is not really a relevant data point. Let’s take the teamvelocity.txt file and 

begin to layer in more information. We already discussed tracking bug data back in 

Chapter 6; now let’s use our bug-tracking software and add in two new bug-related data 

points: the total bugs in each team’s backlog at the end of each sprint and how many 

bugs were opened within each sprint. We’ll name the columns for these new data points 

BugBacklog and BugsOpened, respectively.

The updated file should look something like this:

Sprint,TotalPoints,TotalDevs,Team,BugBacklog,BugsOpened

12.1,25,6,Gold,125,10

12.2,42,8,Gold,135,30

12.3,45,8,Gold,150,25

Let’s next create a scatter plot with this new data. We’ll first compare velocity against 

bugs opened during each iteration:

plot(teamvelocity$TotalPoints,teamvelocity$BugsOpened, type="p", 

xlab="Velocity", ylab="Bugs Opened During Sprint", bg="#CCCCCC", pch=21)

This creates the scatter plot shown in Figure 8-8.
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Now this is very interesting. There is a positive correlation between having more 

people on a team and getting more done (or at least getting more complex work done), 

and the more story points that are completed, the more bugs are generated. So an 

increase in complexity correlates to an increase in the number of bugs created in a given 

sprint. At least that seems to be implied by my data.

Let’s reflect this new data point in the existing bubble chart; instead of sizing circles 

by team, we size them by bugs opened:

symbols(teamvelocity$TotalPoints, teamvelocity$TotalDevs, circles= 

teamvelocity$BugsOpened, inches=0.35, fg="#000000", bg="#CCCCCC", 

ylab="Team Members", xlab="Velocity", main = "Velocity by Team Size by Bugs 

Opened")

Figure 8-8. Correlation of team velocity and bugs opened
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This code produces the bubble chart shown in Figure 8-9; you see that the sizing of 

the bubbles follows the existing pattern of positive correlation, in that the bubbles get 

larger as both the number of team members and the team velocity increases.

Let’s next create a scatter plot to look at the total bug backlog after each sprint:

plot(teamvelocity$TotalPoints,teamvelocity$BugBacklog, type="p", 

xlab="Velocity", ylab="Total Bug Backlog", bg="#CCCCCC", pch=21)

This code produces the chart shown in Figure 8-10.

Figure 8-9. Correlation of team velocity and team size, where circle size indicates 
bugs opened
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This figure shows that no correlation exists. This could be because of any number 

of reasons: maybe the team has been fixing bugs during the sprint, or maybe they are 

closing all the bugs opened during the course of the iteration. Determining the root 

cause is beyond the scope of the scatter plot, but we can tell that while the bugs being 

opened and the level of complexity increases, the total bug backlog does not increase.

Figure 8-10. Correlation of team velocity by total bug backlog
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 Visualizing Production Incidents
Let’s next layer in another data point into the file; we’ll add a column for production 

incidents opened against the work done during the sprint. To be very specific, when a 

body of work in a sprint is completed, it is released to production, and a release number 

is generally associated with that release. This last data point we discuss is concerned 

with tracking issues in production against the release for a given iteration. Not issues that 

came in during the iteration; issues that came in once the work done in the iteration was 

pushed to production.

Now let’s add in the last column, named ProductionIncidents:

Sprint,TotalPoints,TotalDevs,Team,BugBacklog,BugsOpened,ProductionIncidents

12.1,25,6,Gold,125,10,1

12.2,42,8,Gold,135,30,3

12.3,45,8,Gold,150,25,2

Great! Let’s next create a new bubble chart with this data, comparing total story 

points completed, bugs opened each iteration, and production incidents per release:

symbols(teamvelocity$TotalPoints, teamvelocity$BugsOpened, circles=team

velocity$ProductionIncidents, inches=0.35, fg="#000000", bg="#CCCCCC", 

ylab="Bugs Opened", xlab="Velocity", main = "Velocity by Bugs Opened by 

Production Incidents Opened")

This code creates the chart shown in Figure 8-11.
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From this chart, you can see that, at least according to our sample data, there exists a 

positive correlation between total story points completed, bugs opened, and production 

incidents opened for a given sprint.

Finally, now that all the data is layered into the flat file, we can create a scatter plot 

matrix. This is a matrix of all the columns compared with each other with scatter plots. 

We can use the scatter plot matrix to look at all the data at once and quickly pick out any 

correlation patterns that may exist in the data set. We can create a scatter plot matrix 

with just the plot() function or with the pairs() function in the graphics package:

plot(teamvelocity)

pairs(teamvelocity)

Figure 8-11. Correlation of team velocity and bugs opened, where the size of the 
circle indicates the number of production incidents
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Either one produces the chart shown in Figure 8-12.

In Figure 8-12, each row represents one of the columns in the data frame, and 

each scatter plot represents the intersection of those columns. When you scan over 

each scatter plot in the matrix, you can clearly see the correlation patterns in the 

combinations already covered this chapter. While an effective visualization, by looking at 

so many variables at the same time, the eye can easily get fatigued. It’s important to think 

Figure 8-12. Scatter plot matrix of our complete data set
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about how just because you can put everything in one figure, you might not want to. You 

may consider subsetting your data to just certain columns of interest, making a figure 

like this easier to walk through.

 Interactive Scatter Plots in D3
So far in this chapter, we’ve been creating different scatter plots to represent the data 

combinations that we wanted to look at. But what if we want to create a scatter plot that 

allows us to select the data points on which the axes were based? With D3, we can do just 

that!

 Adding the Base HTML and JavaScript
Let’s start with the base HTML structure that has d3.js included as well as the base CSS:

<!DOCTYPE html>

<html>

  <head>

          <meta charset="utf-8">

    <title></title>

<style>

body {

  font: 15px sans-serif;

}

.axis path{

  fill: none;

  stroke: #000;

  shape-rendering: crispEdges;

}

.dot {

  stroke: #000;

}

</style>

</head>

<body>
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<script src="d3.v3.js"></script>

</body>

</html>

Let’s next add in the script tag to hold the chart. Just like the previous D3 examples, 

include the starting variables, margin, x and y range objects, and x- and y-axis objects:

<script>

var margin = {top: 20, right: 20, bottom: 30, left: 40},

    width = 960 - margin.left - margin.right,

    height = 500 - margin.top - margin.bottom;

var x = d3.scale.linear()

    .range([0, width]);

var y = d3.scale.linear()

    .range([height, 0]);

var xAxis = d3.svg.axis()

    .scale(x)

    .orient("bottom");

var yAxis = d3.svg.axis()

    .scale(y)

    .orient("left");

</script>

Let’s also create the SVG tag on the page as in the previous examples:

var svg = d3.select("body").append("svg")

    .attr("width", width + margin.left + margin.right)

    .attr("height", height + margin.top + margin.bottom)

  .append("g")

    .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

 Loading the Data
Now we need to load in the data using the d3.csv() function. In all previous D3 

examples, most of the work was done in the scope of the callback function, but for 

this example, we need to expose our functionality publicly so we can change the data 
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points via form select elements. Yet we still need to drive the initial functionality from 

the callback function because that’s when we will have our data, so we will set up our 

callback function to call stubbed out public functions.

We set a public variable that we call chartData to the data returned from the flat file 

and call two functions called removeDots() and setChartDots():

d3.csv("teamvelocity.txt", function(error, data) {

          chartData = data;

          removeDots()

          setChartDots("TotalDevs", "TotalPoints")

});

Notice that we passed in "TotalDevs" and "TotalPoints" to the setChartDots() 

function. This is to prime the pump because they will be the initial data points we show 

when the page loads.

 Adding Interactive Functionality
Now we need to actually create the things we stubbed out. First, let’s create the variable 

chartData at the root of the script tag where we set the other variables:

var margin = {top: 20, right: 20, bottom: 30, left: 40},

    width = 960 - margin.left - margin.right,

    height = 500 - margin.top - margin.bottom,

    chartData;

Next, we create the removeDots() function, which selects any circles or axes on the 

page and removes them:

function removeDots(){

      svg.selectAll("circle")

           .transition()

               .duration(0)

               .remove()

      svg.selectAll(".axis")

             .transition()

             .duration(0)

             .remove()

}
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And, finally, we create the setChartDots() functionality. The function accepts 

two parameters: xval and yval. Because we want to make sure that the D3 transitions 

are finished running and they have a 250-millisecond default runtime, even when we 

set the duration to 0, we will wrap the contents of the function in a setTimeout() call, 

so we wait 300 milliseconds before starting to draw our chart. If we don’t do this, we 

could enter into a race condition in which we are drawing to screen as the transition is 

removing from the screen.

function setChartDots(xval, yval){

         setTimeout(function() {

         }, 300);

  }

Within the function, we set the domains of the x and y scale objects using the xval 

and yval parameters. These parameters correspond to the column names of the data 

points that we will be charting:

x.domain(d3.extent(chartData, function(d) { return d[xval];}));

y.domain(d3.extent(chartData, function(d) { return d[yval];}));

Next, we draw the circles to the screen, using the global chartData variable to feed it 

and the passed-in columnal data as the x and y coordinates of the circles. We also grow 

the axes in this function, so that we redraw the values each time an axis is changed.

svg.selectAll(".dot")

     .data(chartData)

     .enter().append("circle")

     .attr("class", "dot")

     .attr("r", 3)

     .attr("cx", function(d) { return x(d[xval]);})

     .attr("cy", function(d) { return y(d[yval]);})

     .style("fill", "#CCCCCC");

svg.append("g")

     .attr("class", "axis")

     .attr("transform", "translate(0," + height + ")")

     .call(xAxis)

 svg.append("g")

     .attr("class", "axis")

     .call(yAxis)
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The complete function should look like the following:

function setChartDots(xval, yval){

       setTimeout(function() {

        x.domain(d3.extent(chartData, function(d) { return d[xval];}));

        y.domain(d3.extent(chartData, function(d) { return d[yval];}));

        svg.selectAll(".dot")

            .data(chartData)

          .enter().append("circle")

            .attr("class", "dot")

            .attr("r", 3)

            .attr("cx", function(d) { return x(d[xval]);})

            .attr("cy", function(d) { return y(d[yval]);})

            .style("fill", "#CCCCCC");

            svg.append("g")

                .attr("class", "axis")

                .attr("transform", "translate(0," + height + ")")

                .call(xAxis)

            svg.append("g")

                .attr("class", "axis")

                .call(yAxis)

       }, 300);

}

Excellent!

 Adding Form Fields
Let’s next add in the form fields. We’ll add two select elements, where each option 

corresponds to a column in the flat file. The elements call a JavaScript function, 

getFormData(), that we will define shortly:

<form>

        Y-Axis:

        <select id="yval" onChange="getFormData()">

                 <option value="TotalPoints">Total Points</option>

                 <option value="TotalDevs">Total Devs</option>
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                 <option value="Team">Team</option>

                 <option value="BugsOpened">Bugs Opened</option>

                  <option value="ProductionIncidents">Production Incidents 

</option>

        </select>

        X-Axis:

        <select id="xval" onChange="getFormData()">

                 <option value="TotalPoints">Total Points</option>

                 <option value="TotalDevs">Total Devs</option>

                 <option value="Team">Team</option>

                 <option value="BugsOpened">Bugs Opened</option>

                  <option value="ProductionIncidents">Production Incidents 

</option>

        </select>

</form>

 Retrieving Form Data
The last bit of functionality left is to code the getFormData() function. This function 

pulls out the selected options from both select elements and use those values to pass in 

to setChartDots()—after calling removeDots(), of course.

function getFormData(){

       var xEl = document.getElementById("xval")

       var yEl = document.getElementById("yval")

       var x = xEl.options[xEl.selectedIndex].value

       var y = yEl.options[yEl.selectedIndex].value

       removeDots()

       setChartDots(x,y)

}

Great!
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 Using the Visualization
The complete source code should look like the following:

<!DOCTYPE html>

<html>

  <head>

          <meta charset="utf-8">

    <title></title>

<style>

body {

  font: 10px sans-serif;

}

.axis path,

.axis line {

  fill: none;

  stroke: #000;

  shape-rendering: crispEdges;

}

.dot {

  stroke: #000;

}

</style>

</head>

<body>

        <form>

                Y-Axis:

                <select id="yval" onChange="getFormData()">

                         <option value="TotalPoints">Total Points</option>

                         <option value="TotalDevs">Total Devs</option>

                         <option value="Team">Team</option>

                         <option value="BugsOpened">Bugs Opened</option>

                          <option value="ProductionIncidents">Production 

Incidents</option>

                </select>
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                X-Axis:

                <select id="xval" onChange="getFormData()">

                         <option value="TotalPoints">Total Points</option>

                         <option value="TotalDevs">Total Devs</option>

                         <option value="Team">Team</option>

                         <option value="BugsOpened">Bugs Opened</option>

                          <option value="ProductionIncidents">Production 

Incidents</option>

                </select>

        </form>

<script src="d3.v3.js"></script>

<script>

var margin = {top: 20, right: 20, bottom: 30, left: 40},

    width = 960 - margin.left - margin.right,

    height = 500 - margin.top - margin.bottom,

        chartData;

var x = d3.scale.linear()

    .range([0, width]);

var y = d3.scale.linear()

    .range([height, 0]);

var xAxis = d3.svg.axis()

    .scale(x)

    .orient("bottom");

var yAxis = d3.svg.axis()

    .scale(y)

    .orient("left");

var svg = d3.select("body").append("svg")

    .attr("width", width + margin.left + margin.right)

    .attr("height", height + margin.top + margin.bottom)

  .append("g")

    .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

    svg.append("g")

        .attr("class", "x axis")

        .attr("transform", "translate(0," + height + ")")

        .call(xAxis)
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    svg.append("g")

        .attr("class", "y axis")

        .call(yAxis)

   function getFormData(){

          var xEl = document.getElementById("xval")

          var yEl = document.getElementById("yval")

          var x = xEl.options[xEl.selectedIndex].value

          var y = yEl.options[yEl.selectedIndex].value

          removeDots()

          setChartDots(x,y)

   }

   function removeDots(){

         svg.selectAll("circle")

              .transition()

                  .duration(0)

                  .remove()

         svg.selectAll(".axis")

                 .transition()

                .duration(0)

                .remove()

   }

  function setChartDots(xval, yval){

         setTimeout(function() {

          x.domain(d3.extent(chartData, function(d) { return d[xval];}));

          y.domain(d3.extent(chartData, function(d) { return d[yval];}));

          svg.selectAll(".dot")

              .data(chartData)

            .enter().append("circle")

              .attr("class", "dot")

              .attr("r", 3)

              .attr("cx", function(d) { return x(d[xval]);})

              .attr("cy", function(d) { return y(d[yval]);})

              .style("fill", "#CCCCCC");

               svg.append("g")

                  .attr("class", "axis")
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                  .attr("transform", "translate(0," + height + ")")

                  .call(xAxis)

              svg.append("g")

                  .attr("class", "axis")

                  .call(yAxis)

         }, 300);

  }

d3.csv("teamvelocity.txt", function(error, data) {

          chartData = data;

          removeDots()

          setChartDots("TotalDevs", "TotalPoints")

});

</script>

</body>

</html>

And it should create the interactive visualization shown in Figure 8-13.

Figure 8-13. Interactive scatter plot with D3
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 Summary
This chapter looked at correlations between the speed at which a team moves and the 

opening of bugs and production issues. There is naturally a positive correlation between 

these data points: when we make new things, we create new opportunities for those new 

things and existing things to break.

Of course, that doesn’t mean that we should stop making new things, even if for 

some reason our business units and our very industries would allow it. It means that we 

need to find balance between making new things and nurturing and maintaining the 

things that we already have. This is exactly what we will look at in the next chapter.
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CHAPTER 9

Visualizing the Balance 
of Delivery and Quality 
with Parallel Coordinates
The last chapter looked at using scatter plots to identify relationships between sets of 

data. It discussed the different types of relationships that could exist between data sets, 

such as positive and negative correlation. We couched this idea in the premise of team 

dynamics: Do you see any correlation between the amount of people on a team and the 

amount of work that the team can complete, or between the amount of work completed 

and the number of defects generated?

In this chapter, we tie together the key concepts that we have been talking about: 

visualizing, team feature work, defects, and production incidents. We will tie them 

together using a data visualization called parallel coordinates to show the balance 

between these efforts.

 What Are Parallel Coordinate Charts?
Parallel coordinate charts are a visualization that consists of N amount of vertical axes, 

each representing a unique data set, with lines drawn across the axes. The lines show 

the relationship between the axes, much like scatter plots, and the patterns that the 

lines form indicate the relationship. We can also gather details about the relationships 

between the axes when we see a clustering of lines. Let’s take a look at this using the 

chart in Figure 9-1 as an example.
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I constructed the chart in Figure 9-1 from the data set Seatbelts that comes built 

into R. To see a breakdown of the data set, type ?Seatbelts at the R command line. I 

extracted a subset of the columns available to better highlight the relationships in the 

data:

cardeaths <- data.frame(Seatbelts[,1], Seatbelts[,5], Seatbelts[,6], 

Seatbelts[,8])

colnames(cardeaths) <- c("DriversKilled", "DistanceDriven", "PriceofGas", 

"SeatbeltLaw")

The data set represents the number of drivers killed in car accidents in Great Britain 

before and after it became compulsory to wear seat belts. The axes represent the number 

of drivers killed, the distance driven, the cost of gas at the time, and whether there was a 

seat belt law in place.

Figure 9-1. Parallel coordinates for Seatbelts data set
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There are a number of useful ways to look at parallel coordinates. If we look at the 

lines between a single pair of axes, we can see the relationships between those data sets. 

For example, if we look at the relationship between the price of gas and the seat belt law, 

we can see that the price of gas is constrained pretty tightly for when the seat belt law 

was in place, but covered a large range of prices for when the seat belt law was not in 

place (i.e., a lot of disparate lines converge on the point that represents the time before 

the law, and a narrow band of lines converge on the time after the law was passed). This 

relationship could imply many different things, but because I know the data, I know 

it’s because we just have a much smaller sample size for deaths after the law was put in 

place: 14 years’ worth of data before the seat belt law, but only 2 years’ worth of data after 

the seat belt law.

We can also trace lines across all the axes to see how each of the axes relates. This 

is difficult to do with all the lines of the same color, but when we change the color and 

shading of the lines, we can more easily see the patterns across the chart. Let’s take the 

existing chart and assign colors to the lines (the results are displayed in Figure 9-2; also, 

you’ll need to install the MASS package if you don’t have it already):

library(MASS)

parcoord(cardeaths, col=rainbow(length(cardeaths[,1])), var.label=TRUE)
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Note you need to import the Mass library to use the parcoord() function.

Figure 9-2 begins to show the patterns that exist in the data. The lines that have the 

lowest number of deaths also have the most distances driven and mainly fall into the 

point in time after the seat belt law was enacted. Again, note that we do have a much 

smaller sample size available for post–seat belt law than we do for pre–seat belt law, but 

you can see how it becomes useful and telling to be able to trace the interconnectedness 

of these data points.

Figure 9-2. Parallel coordinates for Seatbelts data set, with each line a different 
shade of gray
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 History of Parallel Coordinate Plots
The idea of using parallel coordinates on vertical axes was invented in 1885 by Maurice 

d’Ocagne when he created the nomograph and the field of nomography. Nomographs 

are tools to calculate values across mathematical rules. The classic example of a 

nomograph still in use today is the line on a thermometer that shows values in both 

Fahrenheit and Celsius. Or think of rulers that show values in inches on one side and 

centimeters on the other.

Note ron Doerfler has written an extensive thesis on nomography available 
here: http://myreckonings.com/wordpress/2008/01/09/the-art-
of-nomography-i-geometric-design/. Doerfler also hosts a site called 
modern nomograms (www.myreckonings.com/modernnomograms/) that 
“offers eye-catching and useful graphical calculators uniquely designed for today's 
applications.”

You can see examples of modern nomograms, courtesy of Ron Doerfler, in Figures 9-3 

and 9-4.
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Figure 9-3. Nomogram demonstrating the conversion of values between the 
functions S, P, R, and T, the basis of the sequential probability ratio test
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Note the term parallel coordinates and the concept that it represents were 
popularized and rediscovered by alfred inselberg while studying at the university 
of illinois. Dr. inselberg is currently a professor at tel aviv university and a senior 
fellow at the san Diego supercomputing Center. Dr. inselberg has also published 
a book on the subject, Parallel Coordinates: Visual Multidimensional Geometry and 
Its Applications (springer, 2009). he has also published a dissertation on how to 
effectively read and use parallel coordinates, entitled “Multidimensional Detective,” 
available from the ieee.

Figure 9-4. Curved scale nomogram, courtesy of Ron Doerfler, Leif Roschier, and 
Joe Marasco
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 Finding Balance
We understand that parallel coordinates are used to visualize the relationship between 

multiple variables, but how does that apply to what we have been talking about so 

far in this book? So far, we discussed quantifying and visualizing the defect backlog, 

the sources of the production incidents, and even the amount of work that our teams 

commit to. Arguably, balancing these aspects of product development can be one of the 

most challenging activities that a team does.

With each iteration, either formal or informal, team members have to decide how 

much effort they should put toward each of these concerns: working on new features, 

fixing bugs on existing features, and addressing production incidents from direct 

feedback from users. And these are just a sampling of the nuances that every product 

team must juggle; they also may have to factor in time to spend on technical debt or 

updating infrastructure.

We can use parallel coordinates to visualize this balance, both for documentation 

and as a tool for analysis when starting new sprints.

 Creating a Parallel Coordinate Chart
There are several different approaches to creating a parallel coordinate chart. Using the 

data from the previous chapter, we could look at the running totals per iteration. Recall 

that the data was a total of points committed to per iteration, as well as a snapshot of 

how many bugs and production incidents were in each team’s backlog, how many new 

bugs were opened during the iteration, and how many members there were on the team. 

The data looked much like this:

  Sprint TotalPoints TotalDevs Team   BugBacklog BugsOpened ProductionIncidents

  1      12.10       25        6 Gold 125        10         1

  2      12.20       42        8 Gold 135        30         3

  3      12.30       45        8 Gold 150        25         2

  4      12.40       43        8 Gold 149        23         3

  5      12.50       32        6 Gold 155        24         1

  6      12.60       43        8 Gold 140        22         4

  7      12.70       35        7 Gold 132         9         1

...
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To make use of this data, we can read it in to R, just as we did in the last chapter:

tvFile <- "/Applications/MAMP/htdocs/teamvelocity.txt"

teamvelocity <- read.table(tvFile, sep=",", header=TRUE)

We then can create a new data frame with all the columns from the teamvelocity 

variable except the Team column. That column is a string, and the R parcoord() function, 

which we use in this example, throws an error if we include strings in the object that we 

pass in to it. Team information wouldn’t make sense in this context, either. The lines that 

will be drawn in the chart will be representative of our teams:

t<- data.frame(teamvelocity$Sprint, teamvelocity$TotalPoints, 

teamvelocity$TotalDevs, teamvelocity$BugBacklog, teamvelocity$BugsOpened, 

teamvelocity$ProductionIncidents)

colnames(t) <- c("sprint", "points", "devs", "total bugs", "new bugs", 

"prod incidents")

We pass the new object into the parcoord() function. We also pass the rainbow() 

function into the color parameter, as well as set the var.label parameter to true, to 

make the upper and lower boundaries of each axis visible on the chart:

parcoord(t, col=rainbow(length(t[,1])), var.label=TRUE)
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This code produces the visualization shown in Figure 9-5.

Figure 9-5 presents some interesting stories for us. We can see that some teams in 

our data set create more bugs as they take on more points’ worth of work. Other teams 

have a large bug backlog while not creating a large number of new bugs during each 

iteration, which implies that they are not closing the bugs that they do open. Some teams 

are more consistent than others. All contain insights that the teams can use for reflection 

and continual improvement. But ultimately this chart is reactive and talks around the 

main issues. It tells us what the effects of each sprint are on our respective backlogs, both 

bugs and production incidents. It also tells us how many bugs were opened during each 

sprint.

Figure 9-5. Parallel coordinate chart of different aspects of overall organizational 
metrics, including points committed to per iteration, total developers by team, total 
bug backlog, new bugs open, and production incidents
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What the figure doesn’t show is the amount of effort spent working against each 

backlog. To show that, we need to do a bit of prep work.

 Adding in Effort
Past chapters I mentioned Greenhopper and Rally as ways to plan iterations, prioritize 

backlogs, and track progress on user stories. No matter the product you choose, it should 

provide some way to categorize or tag your user stories with metadata. Some very simple 

ways to accomplish this categorization without needing your software to support it 

include these:

• Put tagging in the title of each user story (see Figure 9-6 for an 

example of what this could look like in Rally). With this method, you 

need to sum the level of effort for each category, either manually or 

programmatically.

• Nest subprojects for each delineation of effort.

However you go about creating these buckets, you should have a way to track the 

amount of effort spent during each sprint for your categories. To visualize this, just 

export it from your favorite tool into a flat file that resembles the structure shown here:

iteration,defect,prodincidents,features,techdebt,innovation

13.1,6,3,13,2,1

13.2,8,1,7,2,1

13.3,10,1,9,3,2

Figure 9-6. User stories tagged by category, Defect, Feature, or Prod Incident 
(courtesy of Rally)
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13.5,9,2,18,10,3

13.6,7,5,19,8,3

13.7,9,5,21,12,3

13.8,6,7,11,14,3

13.9,8,3,16,18,3

13.10,7,4,15,5,3

To begin using this data, we need to import the contents of the flat file into R. We 

store the data in a variable named teamEffort and pass teamEffort into the parcoord() 

function:

teFile <- "/Applications/MAMP/htdocs/teamEffort.txt"

teamEffort <- read.table(teFile, sep=",", header=TRUE)

parcoord(teamEffort, col=rainbow(length(teamEffort[,1])), var.label=TRUE, 

main="Level of Effort Spent")

This code produces the chart shown in Figure 9-7.
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This chart is less about seeing relationships implied by data and more about seeing 

explicit levels of effort committed to each sprint. In a vacuum, these data points are 

meaningless, but when you look at both charts and compare the total bug backlog and 

total production incidents, compared with the level of effort spent addressing either, you 

begin to see blind spots that the team would need to address. Blind spots might be where 

teams that have high bug backlogs or production incident counts are not spending 

enough effort to address those backlogs.

Figure 9-7. Parallel coordinate plot of level of effort spent toward each 
initiative
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 Brushing Parallel Coordinate Charts with D3
The trick to reading dense parallel coordinate plots is to use a technique called brushing. 

Brushing fades the color or opacity of all the lines on the chart, except for the lines you 

want to trace across the axes. We can achieve this level of interactivity using D3.

 Creating the Base Structure
Let’s start by creating a new HTML file using our base HTML skeletal structure:

<!DOCTYPE html>

<html>

  <head>

          <meta charset="utf-8">

    <title></title>

</head>

<body>

<script src="d3.v3.js"></script>

</body>

</html>

We then create a new script tag to hold the JavaScript for the chart. In this tag, we 

start by creating the variables needed to set the height and width of the chart, an object 

to hold the margin values, an array of axes column names, and the scale object for the x 

object.

We also create variables to reference the D3 SVG line object, a reference to the D3 

axis, and a variable named foreground to hold the groupings of all the paths that will be 

the lines drawn between axes in the chart:

<script>

var margin = {top: 80, right: 160, bottom: 200, left: 160},

     width = 1280 - margin.left - margin.right,

     height = 800 - margin.top - margin.bottom,

         cols = 

["iteration","defect","prodincidents","features","techdebt","innovation"]

var x = d3.scale.ordinal().domain(cols).rangePoints([0, width]),

    y = {};
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var line = d3.svg.line(),

    axis = d3.svg.axis().orient("left"),

    foreground;

</script>

We draw the SVG element to the page and store it in a variable that we name svg:

var svg = d3.select("body").append("svg")

    .attr("width", width + margin.left + margin.right)

    .attr("height", height + margin.top + margin.bottom)

  .append("g")

    .attr("transform", "translate(" + margin.left + "," + margin.top + 

")");

We use d3.csv to load in the teameffort.txt flat file:

d3.csv("teameffort.txt", function(error, data) {

}

So far, we’re following the same format as in previous chapters: lay out variables at 

the top, create the SVG element, and load in the data; most of the data-dependent logic 

happens in the anonymous function that fires when the data has been loaded.

For parallel coordinates, this process changes a bit right here because we need to 

create y-axes for each column in our data.

 Creating a Y-Axis for Each Column
To create a y-axis for each column, we have to loop through the array that holds the 

column names, convert the contents of each column to explicitly be numbers, create an 

index in the y variable for each column, and create a D3 scale object for each column:

cols.forEach(function(d) {

        //convert to numbers

        data.forEach(function(p) { p[d] = +p[d]; });

        //create y scale for each column

        y[d] = d3.scale.linear()

                .domain(d3.extent(data, function(p) { return p[d]; }))

               .range([height, 0]);

});
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 Drawing the Lines
We need to draw the lines that will traverse each axis, so we create an SVG grouping to 

aggregate and hold all the lines. We assign the foreground class to the grouping (doing 

so is important because we will handle the brushing of the lines via CSS):

foreground = svg.append("g")

        .attr("class", "foreground")

We append SVG paths to this grouping. We attach the data to the paths, set the color 

of the paths to randomly generated colors, and stub out mouseover and mouseout event 

handlers. We also set the d attribute of the paths to a function that we will create called 

path().

We’ll come back to those event handlers in a minute.

foreground = svg.append("g")

    .attr("class", "foreground")

  .selectAll("path")

    .data(data)

  .enter().append("path")

 .attr("stroke", function(){return "#" + Math.floor(Math.random()*16777215).

toString(16);})

    .attr("d", path)

    .attr("width", 16)

        .on("mouseover", function(d){

        })

        .on("mouseout", function(d){

        })

Let’s flesh out the path() function. In this function, we accept a parameter named d, 

which will be an index of the data variable. The function returns a mapping of the path 

coordinates with the x and y scales.

function path(d) {

     return line(cols.map(function(p) { return [x(p), y[p](d[p])]; }));

}
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The path() function returns data that looks much like the following—a 

multidimensional array with each index and array consisting of two coordinate values:

[[0, 520], [192, 297.14285714285717], [384, 346.6666666666667], [576, 312], 

[768, 491.1111111111111], [960, 520]]

 Fading the Lines
Let’s take a step back for a second. To handle the brushing, we need to create a style rule 

to fade the opacity of the lines. So let’s return to the head section of the page and create a 

style tag and some style rules.

We set path.fade as the selector and set the stroke-opacity to 4%. While we’re at it, 

we also set body font styles and path styles.

<style>

body {

  font: 15px sans-serif;

  font-weight:normal;

}

path{

  fill: none;

  shape-rendering: geometricPrecision;

  stroke-width:1;

}

path.fade {

  stroke: #000;

  stroke-opacity: .04;

}

</style>

Let’s return to the stubbed out event handlers. D3 provides a function called 

classed() that allows us to add classes to selections. In the mouseover handler, we 

use the classed() function to apply the fade style that we just created to every path in 

the foreground. It fades out each line. We’ll next target the current selection, using d3.

select(this) and classed() to turn off the fade styling.
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In the mouseout handler, we turn off the fade style:

foreground = svg.append("g")

     .attr("class", "foreground")

   .selectAll("path")

     .data(data)

   .enter().append("path")

  .attr("stroke", function(){return "#" + Math.floor(Math.

random()*16777215).toString(16);})

     .attr("d", path)

     .attr("width", 16)

         .on("mouseover", function(d){

                 foreground.classed("fade",true)

                 d3.select(this).classed("fade", false)

        })

        .on("mouseout", function(d){

                 foreground.classed("fade",false)

        })

 Creating the Axes
Finally, we need to create the axes:

var g = svg.selectAll(".column")

               .data(cols)

             .enter().append("svg:g")

               .attr("class", "column")

                   .attr("stroke", "#000000")

                .attr("transform", function(d) { return "translate(" + x(d) 

+ ")"; })

           // Add an axis and title.

           g.append("g")

               .attr("class", "axis")

                .each(function(d) { d3.select(this).call(axis.scale(y[d])); })

             .append("svg:text")

               .attr("text-anchor", "middle")
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               .attr("y", -19)

               .text(String);

Our complete code is as follows:

<!DOCTYPE html>

<html>

  <head>

          <meta charset="utf-8">

    <title></title>

<style>

body {

  font: 15px sans-serif;

  font-weight:normal;

}

path{

  fill: none;

  shape-rendering: geometricPrecision;

  stroke-width:1;

}

path.fade {

  stroke: #000;

  stroke-opacity: .04;

}

</style>

</head>

<body>

<script src="d3.v3.js"></script>

<script>

var margin = {top: 80, right: 160, bottom: 200, left: 160},

     width = 1280 - margin.left - margin.right,

     height = 800 - margin.top - margin.bottom,

         cols = ["iteration","defect","prodincidents","features", 

"techdebt","innovation"]

var x = d3.scale.ordinal().domain(cols).rangePoints([0, width]),

    y = {};
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var line = d3.svg.line(),

    axis = d3.svg.axis().orient("left"),

    foreground;

var svg = d3.select("body").append("svg")

    .attr("width", width + margin.left + margin.right)

    .attr("height", height + margin.top + margin.bottom)

  .append("g")

     .attr("transform", "translate(" + margin.left + "," +  

margin.top + ")");

d3.csv("teameffort.txt", function(error, data) {

        cols.forEach(function(d) {

                //convert to numbers

            data.forEach(function(p) { p[d] = +p[d]; });

            y[d] = d3.scale.linear()

                .domain(d3.extent(data, function(p) { return p[d]; }))

                .range([height, 0]);

                   });

           foreground = svg.append("g")

               .attr("class", "foreground")

             .selectAll("path")

               .data(data)

             .enter().append("path")

            .attr("stroke", function(){return "#" + Math.floor(Math.

random()*16777215).toString(16);})

               .attr("d", path)

               .attr("width", 16)

                  .on("mouseover", function(d){

                          foreground.classed("fade",true)

                          d3.select(this).classed("fade", false)

                  })

                  .on("mouseout", function(d){

                           foreground.classed("fade",false)

                  })
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           var g = svg.selectAll(".column")

               .data(cols)

             .enter().append("svg:g")

               .attr("class", "column")

                   .attr("stroke", "#000000")

                .attr("transform", function(d) { return "translate(" + x(d) 

+ ")"; })

           // Add an axis and title.

           g.append("g")

               .attr("class", "axis")

                .each(function(d) { d3.select(this).call(axis.scale(y[d])); 

})

             .append("svg:text")

               .attr("text-anchor", "middle")

               .attr("y", -19)

               .text(String);

                function path(d) {

                      return line(cols.map(function(p) { return [x(p), y[p]

(d[p])]; }));

                 }

          });

</script>

</body>

</html>
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This code produces the chart shown in Figure 9-8.

If we roll over any of the lines, we see the brushing effect shown in Figure 9-9, in 

which the opacity of all the lines, except the one currently moused over, is scaled back.

Figure 9-8. Parallel coordinate chart created in D3

Figure 9-9. Parallel coordinate chart with interactive brushing
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 Summary
This chapter looked at parallel coordinate charts. You got a taste of their history—how 

they came about originally in the form of nomograms used to show value conversions. 

You looked at their practical application in the context of visualizing how teams balance 

the different aspects of product development in the course of an iteration.

Parallel coordinates are the last visualization type covered in this book, but it is far 

from the last type of visualization out there. And this book is far from the last word on 

the subject. Something that I tell my students at the end of each semester is that I hope 

they will continue to use what they have learned in my class. Only by using the language 

or subject that was covered, by continually playing with it, exploring it, and testing the 

boundaries of it will students incorporate this new tool into their own skillset. Otherwise, 

if they leave the class (or, in this case, close the book) and not think about the subject for 

a good while, they will probably forget much of what we went over.

If you are a developer or technical leader, I hope that you read this book and were 

inspired to begin tracking your own data. This was just a small sampling of things that 

you can track. You can instrument your code to track performance metrics, as covered in 

my book Pro JavaScript Performance: Monitoring and Visualization, or you can use tools 

such as Splunk to create dashboards to visualize usage data and error rates. You can tap 

right into the source code repository database to get such metrics as what times and days 

of the week have the most commit activity to avoid scheduling meetings during those 

times.

The point of all this data tracking is self-improvement—to establish baselines of 

where you currently are and track progress toward where you want to be, to constantly 

refine your craft, and excel at what you do.
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