
Pro Data
Visualization Using
R and JavaScript

Analyze and Visualize Key Data
on the Web
—
Second Edition
—
Tom Barker
Jon Westfall

Pro Data Visualization
Using R and JavaScript
Analyze and Visualize Key Data

on the Web

Second Edition

Tom Barker
Jon Westfall

Pro Data Visualization Using R and JavaScript: Analyze and Visualize Key Data
on the Web

ISBN-13 (pbk): 978-1-4842-7201-5 ISBN-13 (electronic): 978-1-4842-7202-2
https://doi.org/10.1007/978-1-4842-7202-2

Copyright © 2022 by Tom Barker, Jon Westfall

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Zanwei Guo on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004, U.S.A.
Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.
com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484272015. For more
detailed information, please visit http://www.apress.com/source- code.

Printed on acid-free paper

Tom Barker
Pipersville, PA, USA

Jon Westfall
Cleveland, MS, USA

https://doi.org/10.1007/978-1-4842-7202-2

For my grandmother, Ann Biango, who passed away during the
creation of this book. I was very lucky to have her in my life

for as long as I did.

—Tom Barker

v

Table of Contents

Chapter 1: Background ��� 1

What Is Data Visualization? ��� 3

Time Series Charts �� 4

Bar Charts �� 4

Histograms �� 5

Data Maps ��� 6

Scatter Plots �� 7

History ��� 8

Modern Landscape �� 12

Why Data Visualization? �� 14

Tools �� 15

Languages, Environments, and Libraries ��� 15

Analysis Tools �� 17

Process Overview ��� 20

Identify a Problem ��� 20

Gather Data �� 20

Analyze Data �� 24

Visualize Data �� 30

Ethics of Data Visualization ��� 31

Cite Sources �� 32

Be Aware of Visual Cues �� 32

Summary��� 32

About the Authors �� xi

About the Technical Reviewer ��� xiii

Acknowledgments ���xv

vi

Chapter 2: R Language Primer�� 33

Getting to Know the R Console�� 33

The Command Line �� 37

Command History �� 38

Accessing Documentation ��� 39

Packages ��� 40

Importing Data �� 43

Using Headers ��� 44

Specifying a String Delimiter ��� 45

Specifying Row Identifiers ��� 45

Using Custom Column Names ��� 46

Data Structures and Data Types �� 47

Data Frames �� 49

Matrices ��� 51

Adding Lists ��� 54

Looping Through Lists ��� 55

Applying Functions to Lists ��� 56

Functions ��� 59

Summary��� 61

Chapter 3: A Deeper Dive into R ��� 63

Object-Oriented Programming in R ��� 63

S3 Classes ��� 64

S4 Classes ��� 68

Statistical Analysis with Descriptive Metrics in R ��� 70

Median and Mean �� 74

Quartiles �� 74

Standard Deviation �� 75

RStudio IDE ��� 76

R Markdown �� 78

RPubs �� 83

Summary��� 85

Table of ConTenTs

vii

Chapter 4: Data Visualization with D3 �� 87

Preliminary Concepts �� 87

HTML ��� 88

CSS �� 90

SVG �� 91

JavaScript �� 94

History of D3 ��� 95

Using D3 �� 96

Setting Up a Project ��� 97

Using D3 �� 97

Binding Data �� 99

Creating a Bar Chart �� 103

Loading External Data ��� 111

Summary��� 114

Chapter 5: Visualizing Spatial Data from Access Logs ��� 117

What Are Data Maps? �� 117

Access Logs �� 121

Parsing the Access Log ��� 123

Read in the Access Log ��� 124

Parse the Log File �� 125

Geolocation by IP ��� 129

Output the Fields ��� 132

Adding Control Logic ��� 134

Creating a Data Map in R ��� 136

Distributing the Visualization ��� 146

Summary��� 151

Chapter 6: Visualizing Data over Time �� 153

Gathering Data �� 154

Data Analysis with R ��� 155

Calculating the Bug Count ��� 157

Examining the Severity of the Bugs��� 163

Table of ConTenTs

viii

Adding Interactivity with D3 �� 166

Reading in the Data ��� 167

Drawing on the Page ��� 169

Adding Interactivity �� 175

Summary��� 183

Chapter 7: Bar Charts ��� 185

Standard Bar Chart ��� 186

Stacked Bar Chart ��� 188

Grouped Bar Chart �� 191

Visualizing and Analyzing Production Incidents �� 192

Plotting Data on a Bar Chart with R �� 197

Ordering Results �� 200

Creating a Stacked Bar Chart �� 202

Bar Charts in D3 �� 203

Creating a Vertical Bar Chart ��� 204

Creating a Stacked Bar Chart �� 208

Creating an Overlaid Visualization ��� 212

Summary��� 217

Chapter 8: Correlation Analysis with Scatter Plots �� 219

Finding Relationships in Data ��� 220

Introductory Concepts of Agile Development �� 224

Correlation Analysis �� 225

Creating a Scatter Plot��� 226

Creating a Bubble Chart �� 227

Visualizing Bugs �� 228

Visualizing Production Incidents ��� 232

Interactive Scatter Plots in D3 �� 235

Adding the Base HTML and JavaScript�� 235

Loading the Data ��� 236

Adding Interactive Functionality �� 237

Table of ConTenTs

ix

Adding Form Fields �� 239

Retrieving Form Data ��� 240

Using the Visualization �� 241

Summary��� 245

Chapter 9: Visualizing the Balance of Delivery and Quality with Parallel
Coordinates �� 247

What Are Parallel Coordinate Charts? ��� 247

History of Parallel Coordinate Plots��� 251

Finding Balance �� 254

Creating a Parallel Coordinate Chart ��� 254

Adding in Effort �� 257

Brushing Parallel Coordinate Charts with D3 �� 260

Creating the Base Structure �� 260

Creating a Y-Axis for Each Column �� 261

Drawing the Lines �� 262

Fading the Lines �� 263

Creating the Axes �� 264

Summary��� 269

Index ��� 271

Table of ConTenTs

xi

About the Authors

Tom Barker is the Senior Manager of Web Development

at Comcast. He has authored Pro JavaScript Performance:

Monitoring and Visualization and co-authored Foundation

Website Creation with HTML5, CSS3, and JavaScript. Tom

has also served as an adjunct professor at Philadelphia

University for the last ten years. He lives outside of

Philadelphia with his wife and two children.

Jon Westfall is an associate professor of psychology at Delta

State University. He has authored Set Up and Manage Your

Virtual Private Server, Practical R 4, Beginning Android Web

Apps Development, Windows Phone 7 Made Simple, and

several works of fiction including One in the Same, Mandate,

and Franklin: The Ghost Who Successfully Evicted Hipsters

from His Home and Other Short Stories. He lives in Cleveland,

Mississippi, with his wife.

xiii

About the Technical Reviewer

Matt Wiley leads institutional effectiveness, research,

and assessment at Victoria College, facilitating strategic

and unit planning, data-informed decision making,

and state/regional/federal accountability. As a tenured,

associate professor of mathematics, he won awards in both

mathematics education (California) and student engagement

(Texas). Matt holds degrees in computer science, business,

and pure mathematics from the University of California and

Texas A&M systems.

Outside academia, he has co- authored three books about the popular R

programming language and was managing partner of a statistical consultancy for

almost a decade. His programming experience is with R, SQL, C++, Ruby, Fortran, and

JavaScript.

A programmer, a published author, a mathematician, and a transformational leader,

Matt has always melded his passion for writing with his joy of logical problem solving

and data science. From the boardroom to the classroom, he enjoys finding dynamic ways

to partner with interdisciplinary and diverse teams to make complex ideas and projects

understandable and solvable. Matt enjoys being found online via Twitter at @matt math

or http://mattwiley.org/.

http://mattwiley.org/

xv

Acknowledgments

I want to thank Ben Renow-Clarke for thinking of me for this great project. I want to

thank Matthew Moodie and Christine Rickets and the rest of the team at Apress for their

guidance and direction. I want to thank Matt Canning for helping me see the code with

fresh eyes and for keeping me honest.

I want to thank my team at Comcast: every one of you is amazing and I am made

better by being a part of such an incredible team.

I want to thank my amazing wife Lynn and our beautiful children Lukas and Paloma

for their patience and understanding while I would write every night until late in the

night.

—Tom Barker

I’d like to thank my wife and parents for their love and support. I’d also like to thank the

team at Apress for their hard work to help make this project a reality.

—Jon Westfall

1
© Tom Barker, Jon Westfall 2022
T. Barker and J. Westfall, Pro Data Visualization Using R and JavaScript,
https://doi.org/10.1007/978-1-4842-7202-2_1

CHAPTER 1

Background
When the first edition of this text was released, there was a new concept emerging in

the field of web development: using data visualizations as communication tools. Today,

Infographics are everywhere on the Net; however, this concept is something that was

already well established in other fields and departments for generations. At the company

where you work, your finance department probably uses data visualizations to represent

fiscal information both internally and externally; just take a look at the quarterly

earnings reports for almost any publicly traded company. They are full of charts to show

revenue by quarter, or year over year earnings, or a plethora of other historic financial

data. All are designed to show lots and lots of data points, potentially pages and pages of

data points, in a single easily digestible graphic.

Compare the bar chart in Google’s quarterly earnings report from back in 2007 (ah,

when Google was a “small” company; see Figure 1-1) to a subset of the data it is based on

in tabular format (see Figure 1-2).

https://doi.org/10.1007/978-1-4842-7202-2_1#DOI

2

The bar chart is imminently more readable. We can clearly see by the shape of it

that earnings are up and have been steadily going up each quarter. By the color coding,

we can see the sources of the earnings, and with the annotations, we can see both

the precise numbers that those color coding represent and what the year over year

percentages are.

Figure 1-1. Google Q4 2007 quarterly revenue shown in a bar chart

Figure 1-2. Similar earnings data in tabular form

Chapter 1 BaCkground

3

With the tabular data, you have to read labels on the left, line up the data on the

right with those labels, do your own aggregation and comparison, and draw your own

conclusions. There is a lot more upfront work needed to take in the tabular data, and

there exists the very real possibility of your audience either not understanding the data

(thus creating their own incorrect story around the data) or tuning out completely

because of the sheer amount of work needed to take in the information.

It’s not just the finance department that uses visualizations to communicate dense

amounts of data. Maybe your operations department uses charts to communicate

server uptime, or your customer support department uses graphs to show call volume.

Whatever the case, it’s no wonder that engineering and web development groups have

finally gotten on board with this.

As part of any department, group, or industry, we have a huge amount of relevant

data that is important for us to first be aware of so that we can refine and improve what

we do, but also to communicate out to our stakeholders, to demonstrate our successes or

validate resource needs, or to plan tactical roadmaps for the coming year.

Before we can do this, we need to understand what we are doing. We need to

understand what data visualizations are, a general idea of their history, when to use

them, and how to use them both technically and ethically.

 What Is Data Visualization?
OK, so what exactly is data visualization? Data visualization is the art and practice of

gathering, analyzing, and graphically representing empirical information. They are

sometimes called information graphics (“Infographics”), or even just charts and graphs.

Whatever you call it, the goal of visualizing data is to tell the story in the data. Telling the

story is predicated on understanding the data at a very deep level and gathering insight

from comparisons of data points in the numbers.

There exists syntax for crafting data visualizations, patterns in the form of charts that

have an immediately known context. We devote a chapter to each of the significant chart

types later in the book.

Chapter 1 BaCkground

4

 Time Series Charts
Time series charts show changes over time. See Figure 1-3 for a time series chart that

shows the weighted popularity of the keyword “Data Visualization” from Google Trends

(www.google.com/trends/).

Note that the vertical y-axis shows a sequence of numbers that increment by 20 up to

100. These numbers represent the weighted search volume, where 100 is the peak search

volume for our term. On the horizontal x-axis, we see years going from 2007 to 2012. The

line in the chart represents both axes, the given search volume for each date.

From just this small sample size, we can see that the term has more than tripled

in popularity, from a low of 29 in the beginning of 2007 up to the ceiling of 100 by the

end of 2012.

 Bar Charts
Bar charts show comparisons of data points. See Figure 1-4 for a bar chart that

demonstrates the search volume by country for the keyword “Data Visualization,” the

data for which is also sourced from Google Trends.

Figure 1-3. Time series of weighted trend for the keyword “Data Visualization”
from Google Trends

Chapter 1 BaCkground

http://www.google.com/trends/

5

We can see the names of the countries on the y-axis and the normalized search

volume, from 0 to 100, on the x-axis. Notice, though, that no time measure is given. Does

this chart represent data for a day, a month, or a year?

Also note that we have no context for what the unit of measure is. I highlight

these points not to answer them but to demonstrate the limitations and pitfalls of this

particular chart type. We must always be aware that our audience does not bring the

same experience and context that we bring, so we must strive to make the stories in our

visualizations as self-evident as possible.

 Histograms
Histograms are a type of bar chart that displays continuous data on both axes. It is

used to show the distribution of data or how often groups of information appear in

the data. See Figure 1-5 for a histogram that shows how many articles the New York

Times published each year, from 1980 to 2012, that related in some way to the subject of

data visualization. We can see from the chart that the subject has been ramping up in

frequency since 2009.

Figure 1-4. Google Trends breakdown of search volume by region for keyword
“Data Visualization”

Chapter 1 BaCkground

6

 Data Maps
Data maps are used to show the distribution of information over a spatial region.

Figure 1-6 shows a data map used to demonstrate the interest in the search term “Data

Visualization” broken out by US states.

Figure 1-5. Histogram showing distribution of NY Times articles about data
visualization

Chapter 1 BaCkground

7

In this example, the states with the darker shades indicate a greater interest in

the search term. (This data also is derived from Google Trends, for which interest is

demonstrated by how frequently the term “Data Visualization” is searched for on

Google.) It’s also worth noting that while darker shades tend to be used to indicate

greater impact, without a legend, we wouldn’t know this for sure.

 Scatter Plots
Like bar charts, scatter plots are used to compare data, but specifically to suggest

correlations in the data, or where the data may be dependent or related in some way.

See Figure 1-7, in which we use data from Google Correlate (www.google.com/trends/

correlate), to look for a relationship between search volume for the keyword “What is

Data Visualization” and the keyword “How to Create Data Visualization.”

Figure 1-6. Data map of US states by interest in “Data Visualization” (data from
Google Trends)

Chapter 1 BaCkground

http://www.google.com/trends/correlate
http://www.google.com/trends/correlate

8

This chart suggests a positive correlation in the data, meaning that as one term

rises in popularity, the other also rises. So what this chart suggests is that as more

people find out about data visualization, more people want to learn how to create data

visualizations.

The important thing to remember about correlation is that it does not suggest a

direct cause—correlation is not causation. Just because two numbers move in the same

direction, does not mean one is causing the other to change. There could always be a

third variable, or coincidence, causing the correlation.

 History
If we’re talking about the history of data visualization, the modern conception of data

visualization largely started with William Playfair. William Playfair was, among other

things, an engineer, an accountant, a banker, and an all-around Renaissance man who

Figure 1-7. Scatter plot examining the correlation between search volume for
terms related to “Data Visualization,” “How to Create,” and “What is”

Chapter 1 BaCkground

9

single-handedly created the time series chart, the bar chart, and the bubble chart.

Playfair’s charts were published in the late eighteenth century into the early nineteenth

century. He was very aware that his innovations were the first of their kind, at least in

the realm of communicating statistical information, and he spent a good amount of

space in his books describing how to make the mental leap to seeing bars and lines as

representing physical things like money.

Playfair is best known for two of his books: the Commercial and Political Atlas and

the Statistical Breviary. The Commercial and Political Atlas was published in 1786 and

focused on different aspects of economic data from national debt to trade figures and

even military spending. It also featured the first printed time series graph and bar chart.

His Statistical Breviary focused on statistical information around the resources of the

major European countries of the time and introduced the bubble chart.

Playfair had several goals with his charts, among them perhaps stirring controversy,

commenting on the diminishing spending power of the working class, and even

demonstrating the balance of favor in the import and export figures of the British

Empire, but ultimately his most wide-reaching goal was to communicate complex

statistical information in an easily digested, universally understood format.

Note Both books are back in print relatively recently, thanks to howard Wainer,
Ian Spence, and Cambridge university press.

Playfair had several contemporaries, including Dr. John Snow, who made my

personal favorite chart: the cholera map. The cholera map is everything an informational

graphic should be: it was simple to read, it was informative, and, most importantly, it

solved a real problem.

The cholera map is a data map that outlined the location of all the diagnosed cases of

cholera in the outbreak of London 1854 (see Figure 1-8). The shaded areas are recorded

deaths from cholera, and the shaded circles on the map are water pumps. From careful

inspection, the recorded deaths seemed to radiate out from the water pump on Broad

Street.

Chapter 1 BaCkground

10

Dr. Snow had the Broad Street water pump closed, and the outbreak ended.

Beautiful, concise, and logical.

Another historically significant information graphic is the Diagram of the Causes of

Mortality in the Army in the East, by Florence Nightingale and William Farr. This chart is

shown in Figure 1-9.

Figure 1-8. John Snow’s cholera map

Chapter 1 BaCkground

11

Nightingale and Farr created this chart in 1856 to demonstrate the relative number of

preventable deaths and, at a higher level, to improve the sanitary conditions of military

installations. Note that the Nightingale and Farr visualization is a stylized pie chart. Pie

charts are generally a circle representing the entirety of a given data set with slices of the

circle representing percentages of a whole. The usefulness of pie charts is sometimes

debated because it can be argued that it is harder to discern the difference in value

between angles than it is to determine the length of a bar or the placement of a line

against Cartesian coordinates. Nightingale seemingly avoids this pitfall by having not

just the angle of the wedge hold value but by also altering the relative size of the slices so

they eschew the confines of the containing circle and represent relative value. This likely

wins over some of the detractors of pie charts; however, in some circles of science and

academia, there is no such thing as a good pie chart!

All the above examples had specific goals or problems that they were trying to solve.

Figure 1-9. Florence Nightingale and William Farr’s Diagram of the Causes of
Mortality in the Army in the East

Chapter 1 BaCkground

12

Note a rich comprehensive history is beyond the scope of this book, but if you
are interested in a thoughtful, incredibly researched analysis, be sure to read
edward tufte’s The Visual Display of Quantitative Information.

 Modern Landscape
Data visualization is in the midst of a modern revitalization due in large part to the

proliferation of cheap storage space to store logs and free and open source tools to

analyze and chart the information in these logs.

From a consumption and appreciation perspective, there are websites that are

dedicated to studying and talking about information graphics. There are generalized

sites such as FlowingData that both aggregate and discuss data visualizations from

around the Web, from astrophysics timelines to mock visualizations used on the floor of

Congress.

The mission statement from the FlowingData About page (http://flowingdata.

com/about/) is appropriately the following: “FlowingData explores how designers,

statisticians, and computer scientists use data to understand ourselves better—mainly

through data visualization.”

There are more specialized sites such as quantifiedself.com that are focused on

gathering and visualizing information about oneself. There are even web comics about

data visualization, the quintessential one being xkcd.com, run by Randall Munroe. One

of the most famous and topical visualizations that Randall has created thus far is the

Radiation Dose Chart. We can see the Radiation Dose Chart in Figure 1-10 (it is available

in high resolution here: http://xkcd.com/radiation/).

Chapter 1 BaCkground

http://flowingdata.com/about/
http://flowingdata.com/about/
http://xkcd.com/radiation/

13

Figure 1-10. Radiation Dose Chart, by Randall Munroe. Note that the range
in scale being represented in this visualization as a single block in one chart is
exploded to show an entirely new microcosm of context and information. This
pattern is repeated over and over again to show an incredible depth of information

Chapter 1 BaCkground

14

This chart was created in response to the Fukushima Daiichi nuclear disaster of

2011 and sought to clear up misinformation and misunderstanding of comparisons

being made around the disaster. It did this by demonstrating the differences in scale

for the amount of radiation from sources such as other people or a banana up to what a

fatal dose of radiation ultimately would be—how all that compared to spending just ten

minutes near the Chernobyl meltdown.

Over the last quarter of a century, Edward Tufte, author and professor emeritus at

Yale University, has been working to raise the bar of information graphics. He published

groundbreaking books detailing the history of data visualization, tracing its roots even

further back than Playfair to the beginnings of cartography. Among his principles is

the idea to maximize the amount of information included in each graphic—both by

increasing the amount of variables or data points in a chart and by eliminating the use

of what he has coined chartjunk. Chartjunk, according to Tufte, is anything included in a

graph that is not information, including ornamentation or thick, gaudy arrows.

Tufte also invented the sparkline, a time series chart with all axes removed and only

the trend line remaining to show historic variations of a data point without concern for

exact context. Sparklines are intended to be small enough to place in line with a body

of text, similar in size to the surrounding characters, and to show the recent or historic

trend of whatever the context of the text is.

 Why Data Visualization?
In William Playfair’s introduction to the Commercial and Political Atlas, he rationalizes

that just as algebra is the abbreviated shorthand for arithmetic, so are charts a way

to “abbreviate and facilitate the modes of conveying information from one person to

another.” Almost 300 years later, this principle remains the same.

Data visualizations are a universal way to present complex and varied amounts of

information, as we saw in our opening example with the quarterly earnings report. They

are also powerful ways to tell a story with data.

Imagine you have your Apache logs in front of you, with thousands of lines all

resembling the following:

127.0.0.1 - - [10/Dec/2012:10:39:11 +0300] "GET / HTTP/1.1" 200 468 "-"

"Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.1.3) Gecko/20061201

Firefox/2.0.0.3 (Ubuntu-feisty)"

Chapter 1 BaCkground

15

127.0.0.1 - - [10/Dec/2012:10:39:11 +0300] "GET /favicon.ico HTTP/1.1" 200

766 "-" "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.1.3) Gecko/20061201

Firefox/2.0.0.3 (Ubuntu-feisty)"

Among other things, we see IP address, date, requested resource, and client user

agent. Now imagine this repeated thousands of times—so many times that your eyes

kind of glaze over because each line so closely resembles the ones around it that it’s hard

to discern where each line ends, let alone what cumulative trends exist within.

By using some analysis and visualization tools such as R, or even a commercial

product such as Splunk, we can artfully pull out all kinds of meaningful and interesting

stories out of this log, from how often certain HTTP errors occur and for which resources

to what our most widely used URLs are, to what the geographic distribution of our user

base is.

This is just our Apache access log. Imagine casting a wider net, pulling in release

information, bugs, and production incidents. What insights we could gather about what

we do: from how our velocity impacts our defect density to how our bugs are distributed

across our feature sets. And what better way to communicate those findings and tell

those stories than through a universally digestible medium, like data visualizations?

The point of this book is to explore how we as developers can leverage this practice

and medium as part of continual improvement—both to identify and quantify our

successes and opportunities for improvements and more effectively communicate our

learning and our progress.

 Tools
There are a number of excellent tools, environments, and libraries that we can use both

to analyze and visualize our data. The next two sections describe them.

 Languages, Environments, and Libraries
The tools that are most relevant to web developers are Splunk, R, and the D3 (Data-

Driven Documents) JavaScript library. See Figure 1-11 for a comparison of interest over

time for them (from Google Trends).

Chapter 1 BaCkground

16

From the figure, we can see that R has had a steady consistent amount of interest

since 200; Splunk had an introduction to the chart around 2005, had a spike of interest

around 2006, and had steady growth since then, which only started tapering off in

2019. As for D3, we see it just start to peak around 2011 when it was introduced and its

predecessor Protovis was sunsetted. R and D3 have remained relatively stable in interest

in the years since 2013.

Let’s start with the tool of choice for many developers, scientists, and statisticians:

the R language. We have a deep dive into the R environment and language in the next

chapter, but for now, it’s enough to know that it is an open source environment and

language used for statistical analysis and graphical display. It is powerful, fun to use,

and, best of all, it is free.

Splunk has seen a tremendous steady growth in interest over the last few years—and

for good reason. It is easy to use once it’s set up, scales wonderfully, supports multiple

concurrent users, and puts data reporting at the fingertips of everyone. You simply set it

up to consume your log files; then you can go into the Splunk dashboard and run reports

on key values within those logs. Splunk creates visualizations as part of its reporting

capabilities, as well as alerting. While Splunk is a commercial product, it also offers a free

trial version, available here: www.splunk.com/download.

D3 is a JavaScript library that allows us to craft interactive visualizations. It is the

official follow-up to Protovis. Protovis was a JavaScript library created in 2009 by Stanford

University’s Stanford Visualization Group. Protovis was sunsetted in 2011, and the

creators unveiled D3. We explore the D3 library at length in Chapter 4.

Figure 1-11. Google Trends analysis of interest over time in Splunk, R, and D3

Chapter 1 BaCkground

http://www.splunk.com/download

17

 Analysis Tools
Aside from the previously mentioned languages and environments, there are a number

of analysis tools available online.

A great hosted tool for analysis and research is Google Trends. Google Trends

allows you to compare trends on search terms. It provides all kinds of great statistical

information around those trends, including comparing their relative search volume (see

Figure 1-12), the geographic area those trends are coming from (see Figure 1-13), and

related keywords.

Figure 1-12. Google Trends for the terms “data scientist” and “computer scientist”
over time; note the interest in the term “data scientist” growing rapidly from 2011
on to match the interest in the term “computer scientist”

Chapter 1 BaCkground

18

Another great tool for analysis is Wolfram|Alpha (http://wolframalpha.com). See

Figure 1-14 for a screenshot of the Wolfram|Alpha home page.

Figure 1-14. Home page for Wolfram|Alpha

Figure 1-13. Google Trends data map showing geographic location where interest
in the keywords is originating

Chapter 1 BaCkground

http://wolframalpha.com

19

Wolfram|Alpha is not a search engine. Search engines spider and index content.

Wolfram|Alpha is instead a question answering (QA) engine that parses human-readable

sentences with natural language processing and responds with computed results. Say,

for example, you want to search for the speed of light. You might go to the Wolfram|Alpha

site and type in “what is the speed of light”. Remember that it uses natural language

processing to parse your search query, not the keyword lookup.

The results of this query can be seen in Figure 1-15. Wolfram|Alpha essentially looks

up all the data it has around the speed of light and presents it in a structured, categorized

fashion. You can also export the raw data for each result.

Figure 1-15. Wolfram|Alpha results for query “what is the speed of light”

Chapter 1 BaCkground

20

 Process Overview
So we understand what data visualization is and have a high-level understanding of the

history of it and an idea of the current landscape. We’re beginning to get an inkling about

how we can start to use this in our world. We know some of the tools that are available

to us to facilitate the analysis and creation of our charts. Now let’s look at the process

involved.

Creating data visualizations involves four core steps:

 1. Identify a problem.

 2. Gather the data.

 3. Analyze the data.

 4. Visualize the data.

Let’s walk through each step in the process and re-create one of the previous charts

to demonstrate the process.

 Identify a Problem
The very first step is to identify a problem we want to solve. This can be almost

anything—from something as profound and wide reaching as figuring out why your bug

backlog doesn’t seem to go down and stay down to seeing what feature releases over a

given period in time caused the most production incidents and why.

For our example, let’s re-create Figure 1-5 and try to quantify the interest in data

visualization over time as represented by the number of New York Times articles on the

subject.

 Gather Data
We have an idea of what we want to investigate, so let’s dig in. If you are trying to solve

a problem or tell a story around your own product, you would of course start with your

own data—maybe your Apache logs, maybe your bug backlog, maybe exports from your

project tracking software.

Chapter 1 BaCkground

21

Note If you are focusing on gathering metrics around your product and you don’t
already have data handy, you need to invest in instrumentation. there are many
ways to do this, usually by putting logging in your code. at the very least, you
want to log error states and monitor those, but you may want to expand the scope
of what you track to include for debugging purposes while still respecting both
your user’s privacy and your company’s privacy policy. In my book, Pro JavaScript
Performance: Monitoring and Visualization, I explore ways to track and visualize
web and runtime performance.

One important aspect of data gathering is deciding which format your data should

be in (if you’re lucky) or discovering which format your data is available in. We’ll next be

looking at some of the common data formats in use today.

JSON is an acronym that stands for JavaScript Object Notation. As you probably

know, it is essentially a way to send data as serialized JavaScript objects. We format JSON

as follows:

[object]{

 [attribute]: [value],

 [method] : function(){},

 [array]: [item, item]

}

Another way to transfer data is in XML format. XML has an expected syntax, in which

elements can have attributes, which have values, values are always in quotes, and every

element must have a closing element. XML looks like this:

<parent attribute="value">

 <child attribute="value">node data</child>

</parent>

Generally, we can expect APIs (or application programing interfaces) to return XML

or JSON to us, and our preference is usually JSON because as we can see it is a much

more lightweight option just in sheer amount of characters used.

Chapter 1 BaCkground

22

But if we are exporting data from an application, it most likely will be in the form

of a comma-separated value file, or CSV. A CSV is exactly what it sounds like: values

separated by commas or some other sort of delimiter:

value1,value2,value3

value4,value5,value6

For our example, we’ll use the New York Times API (application programming

interface) tool (free registration required), available at http://prototype.nytimes.com/

gst/apitool/index.html. The API tool exposes all the APIs that the New York Times

makes available, including the Article Search API, the Campaign Finance API, and the

Movie Review API. All we need to do is select the APIs button, then choose Article Search

API button from choices presented, Choose the /articlesearch.json path, type in our

search query or the phrase that we want to search for, and click “Make Request”.

This queries the API and returns the data to us, formatted as JSON. We can see the

results in Figure 1-16.

We can then copy and paste the returned JSON data to our own file, or we could go

the extra step to get an API key so that we can query the API from our own applications.

Figure 1-16. The NY Times API tool

Chapter 1 BaCkground

http://prototype.nytimes.com/gst/apitool/index.html
http://prototype.nytimes.com/gst/apitool/index.html

23

For the sake of our example, we will save the JSON data to a file that we will name

jsNYTimesData.txt. The contents of the file will be structured like so:

{

 "offset": "0",

 "results": [

 {

 "body": "BODY COPY",

 "byline": "By AUTHOR",

 "date": "20121011",

 "title": "TITLE",

 "url": "http:\/\/ www.nytimes.com/foo.html "

 }, {

 "body": "BODY COPY",

 "byline": "By AUTHOR",

 "date": "20121021",

 "title": "TITLE",

 "url": "http:\/\/ www.nytimes.com/bar.html "

 }

],

 "tokens": [

 "JavaScript"

],

 "total": 2

}

Looking at the high-level JSON structure, we see an attribute named offset, an

array named results, an array named tokens, and another attribute named total. The

offset variable is for pagination (what page full of results we are starting with). The

total variable is just what it sounds like: the number of results that are returned for our

query. It’s the results array that we really care about; it is an array of objects, each of

which corresponds to an article.

The article objects have attributes named body, byline, date, title, and url.

We now have data that we can begin to look at. That takes us to our next step in the

process, analyzing our data.

Chapter 1 BaCkground

24

DATA SCRUBBING

there is often a hidden step here, one that anyone who’s dealt with data knows about:

scrubbing the data. often the data is either not formatted exactly as we need it or, in even

worse cases, it is dirty or incomplete.

In the best-case scenario in which your data just needs to be reformatted or even

concatenated, go ahead and do that, but be sure to not lose the integrity of the data.

dirty data has fields out of order, fields with obviously bad information in them—think dashes

in ZIp codes—or gaps in the data. If your data is dirty, you have several choices:

• You could drop the rows in question, but that can harm the integrity of the

data—a good example is if you are creating a histogram, removing rows could

change the distribution and change what your results will be.

• the better alternative is to reach out to whoever administers the source of your

data and try and get a better version if it exists.

Whatever the case, if data is dirty or it just needs to be reformatted to be able to be imported

into r, expect to have to scrub your data at some point before you begin your analysis.

 Analyze Data
Having data is great, but what does it mean? We determine it through analysis.

Analysis is the most crucial piece of creating data visualizations. It’s only through

analysis that we can understand our data, and it is only through understanding it that we

can craft our story to share with others.

To begin analysis, let’s import our data into R. Don’t worry if you aren’t completely

fluent in R; we do a deep dive into the language in the next chapter. If you aren’t

familiar with R yet, don’t worry about coding along with the following examples: just

follow along to get an idea of what is happening and return to these examples after

reading Chapters 3 and 4.

Chapter 1 BaCkground

25

Because our data is JSON, let’s use an R package called rjson. This will allow us to

read in and parse JSON with the fromJSON() function:

install.packages("rjson")

library(rjson)

json_data <- fromJSON(paste(readLines("jsNYTimesData.txt"), collapse=""))

This is great, except the data is read in as pure text, including the date information.

We can’t extract information from text because obviously text has no contextual meaning

outside of being raw characters. So we need to iterate through the data and parse it to

more meaningful types.

Let’s create a data frame (an array-like data type specific to R that we talk about next

chapter), loop through our json_data object, and parse year, month, and day parts out of

the date attribute. Let’s also parse the author name out of the byline and check to make

sure that if the author’s name isn’t present, we substitute the empty value with the string

"unknown".

df <- data.frame()

for(n in json_data$response$docs){

 year <-substr(n$pub_date, 0, 4)

 month <- substr(n$pub_date, 6, 7)

 day <- substr(n$pub_date, 9, 10)

 author <- substr(n$byline$original, 4, 30)

 title <- n$headline$main

 if(length(author) < 1){

 author <- "unknown"

 }

Next, we can reassemble the date into a MM/DD/YYYY formatted string and convert

it to a date object:

datestamp <-paste(month, "/", day, "/", year, sep="")

datestamp <- as.Date(datestamp,"%m/%d/%Y")

Chapter 1 BaCkground

26

And finally, before we leave the loop, we should add this newly parsed author and

date information to a temporary row and add that row to our new data frame:

 newrow <- data.frame(datestamp, author, title,

stringsAsFactors=FALSE, check.rows=FALSE)

 df <- rbind(df, newrow)

}

rownames(df) <- df$datestamp

Our complete loop should look like the following:

df <- data.frame()

for(n in json_data$response$docs){

 year <-substr(n$pub_date, 0, 4)

 month <- substr(n$pub_date, 6, 7)

 day <- substr(n$pub_date, 9, 10)

 author <- substr(n$byline$original, 4, 30)

 title <- n$headline$main

 if(length(author) < 1){

 author <- "unknown"

 }

 datestamp <-paste(month, "/", day, "/", year, sep="")

 datestamp <- as.Date(datestamp,"%m/%d/%Y")

 newrow <- data.frame(datestamp, author, title,

stringsAsFactors=FALSE, check.rows=FALSE)

 df <- rbind(df, newrow)

}

rownames(df) <- df$datestamp

Note that our example assumes that the data set returned has unique date values.

If you get errors with this, you may need to scrub your returned data set to purge any

duplicate rows. Also be mindful that the New York Times API may change over time.

Between revisions of this book, the API tool changed various titles (e.g., “title” became

“headline”). If this code doesn’t appear to work, you’ll want to read through the JSON

data to see if, perhaps, they’ve pulled a switch again!

Once our data frame is populated, we can start to do some analysis on the data. Let’s

start out by pulling just the year from every entry and quickly making a stem and leaf plot

to see the shape of the data.

Chapter 1 BaCkground

27

Note John tukey created the stem and leaf plot in his seminal work, Exploratory
Data Analysis. Stem and leaf plots are quick, high-level ways to see the shape of
data, much like a histogram. In the stem and leaf plot, we construct the “stem”
column on the left and the “leaf” column on the right. the stem consists of the
most significant unique elements in a result set. the leaf consists of the remainder
of the values associated with each stem. In our stem and leaf plot in the following,
the years are our stem and r shows zeroes for each row associated with a given
year. Something else to note is that often alternating sequential rows are combined
into a single row, in the interest of having a more concise visualization.

First, we will create a new variable to hold the year information:

yearlist <- as.POSIXlt(df$datestamp)$year+1900

If we inspect this variable, we see that it looks something like this:

> yearlist

 [1] 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2011

2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011

[30] 2011 2011 2011 2011 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010

2009 2009 2009 2009 2009 2009 2009 2008 2008 2008 2007 2007 2007 2007 2006

[59] 2006 2006 2006 2005 2005 2005 2005 2005 2005 2004 2003 2003 2003 2002

2002 2002 2002 2001 2001 2000 2000 2000 2000 2000 2000 1999 1999 1999 1999

[88] 1999 1999 1998 1998 1998 1997 1997 1996 1996 1995 1995 1995 1993 1993

1993 1993 1992 1991 1991 1991 1990 1990 1990 1990 1989 1989 1989 1988 1988

[117] 1988 1986 1985 1985 1985 1984 1982 1982 1981

That’s great, that’s exactly what we want: a year to represent every article returned.

Next, let’s create the stem and leaf plot:

> stem(yearlist)

 1980 | 0

 1982 | 00

 1984 | 0000

 1986 | 0

 1988 | 000000

Chapter 1 BaCkground

28

 1990 | 0000000

 1992 | 00000

 1994 | 000

 1996 | 0000

 1998 | 000000000

 2000 | 00000000

 2002 | 0000000

 2004 | 0000000

 2006 | 00000000

 2008 | 0000000000

 2010 | 000000000000000000000000000000

 2012 | 0000000000000

Very interesting. We see a gradual build with some dips in the mid-1990s, another

gradual build with another dip in the mid-2000s, and a strong explosion since 2010 (the

stem and leaf plot groups years together in twos).

Looking at that, my mind starts to envision a story building about a subject growing

in popularity. But what about the authors of these articles? Maybe they are the result of

one or two very interested authors that have quite a bit to say on the subject.

Let’s explore that idea and take a look at the author data that we parsed out. Let’s

look at just the unique authors from our data frame:

> length(unique(df$author))

[1] 81

We see that there are 81 unique authors or combination of authors for these articles!

Just out of curiosity, let’s take a look at the breakdown by author for each article. Let’s

quickly create a bar chart to see the overall shape of the data (the bar chart is shown in

Figure 1-17):

plot(table(df$author), axes=FALSE)

Chapter 1 BaCkground

29

Figure 1-17. Bar chart of number of articles by author to quickly visualize

We remove the x- and y-axes to allow ourselves to focus just on the shape of the data

without worrying too much about the granular details. From the shape, we can see a

large number of bars with the same value; these are authors who have written a single

article. The higher bars are authors who have written multiple articles. Essentially each

bar is a unique author, and the height of the bar indicates the number of articles they

have written. We can see that although there are roughly five standout contributors, most

authors have average one article.

Note that we just created several visualizations as part of our analysis. The two steps

aren’t mutually exclusive; we oftentimes create quick visualizations to facilitate our

own understanding of the data. It’s the intention with which they are created that make

them part of the analysis phase. These visualizations are intended to improve our own

understanding of the data so that we can accurately tell the story in the data.

What we’ve seen in this particular data set tells a story of a subject growing in

popularity, demonstrated by the increasing number of articles (in the stem plot) by a

variety of authors (in the bar plot). Let’s now prepare it for mass consumption.

Note We are not fabricating or inventing this story. Like information
archaeologists, we are sifting through the raw data to uncover the story.

Chapter 1 BaCkground

30

 Visualize Data
Once we’ve analyzed the data and understand it (and I mean really understand the data

to the point where we are conversant in all the granular details around it), and once

we’ve seen the story that the data has within, it is time to share that story.

For the current example, we’ve already crafted a stem and leaf plot as well as a bar

chart as part of our analysis. However, stem and leaf plots are great for analyzing data,

but not so great for messaging out about the findings. It is not immediately obvious

what the context of the numbers in a stem and leaf plot represents. And the bar chart we

created supported the main thesis of the story instead of communicating that thesis.

Since we want to demonstrate the distribution of articles by year, let’s instead use a

histogram to tell the story:

hist(yearlist)

See Figure 1-18 for what this call to the hist() function generates.

Figure 1-18. Histogram of yearlist

Chapter 1 BaCkground

31

This is a good start, but let’s refine this further. Let’s color in the bars, give the chart a

meaningful title, and strictly define the range of years:

hist(yearlist, breaks=(1981:2012), freq=TRUE, col="#CCCCCC",

main="Distribution of Articles about Data Visualization\nby the NY Times",

xlab = "Year")

This produces the histogram that we see in Figure 1-5.

 Ethics of Data Visualization
Remember Figure 1-3 from the beginning of this chapter where we looked at the

weighted popularity of the search term “Data Visualization”? By constraining the data

to 2006 to 2012, we told a story of a keyword growing in popularity, almost doubling

in popularity over a six-year period. But what if we included more data points in our

sample and extended our view to include 2004? See Figure 1-19 for this expanded time

series chart.

This expanded chart tells a different story: one that describes a dip in popularity

between 2005 and 2009. This expanded chart also demonstrates how easy it is to

misrepresent the truth intentionally or unintentionally with data visualizations.

Figure 1-19. Google Trends time series chart with expanded time range. Note that
the additional data points give a greater context and tell a different story

Chapter 1 BaCkground

32

 Cite Sources
When Playfair first published his Commercial and Political Atlas, one of the biggest

biases he had to battle was the inherent distrust his peers had of charts to accurately

represent data. He tried to overcome this by including data tables in the first two editions

of the book.

Similarly, we should always include our sources when distributing our charts so

that our audience can go back and independently verify the data if they want to. This

is important because we are trying to share information, not hoard it, and we should

encourage others to inspect the data for themselves and be excited about the results.

 Be Aware of Visual Cues
A side effect of using charts to function as visual shorthand is that we bring our own

perspective and context to play when we view charts. We are used to certain things, such

as the color red being used to signify danger or flagging for attention or the color green

signifying safety. These color connotations are part of a branch of color theory called

color harmony, and it’s worth at least being aware of what your color choices could be

implying.

When in doubt, get a second opinion. When creating our graphics, we can often

get married to a certain layout or chart choice. This is natural because we have spent

time invested in analyzing and crafting the chart. A fresh, objective set of eyes should

point out unintentional meanings or overly complex designs and make for a more crisp

visualization.

 Summary
This chapter took a look at some introductory concepts about data visualization,

from conducting data gathering and exploration to looking at the charts that make up

the visual patterns that define how we communicate with data. We looked a little at

the history of data visualization, from the early beginnings with William Playfair and

Florence Nightingale to modern examples such as xkcd.com.

While we saw a little bit of code in this chapter, in the next chapter we start to dig in

to the tactics of learning R and getting our hands dirty reading in data, shaping data, and

crafting our own visualizations.

Chapter 1 BaCkground

33
© Tom Barker, Jon Westfall 2022
T. Barker and J. Westfall, Pro Data Visualization Using R and JavaScript,
https://doi.org/10.1007/978-1-4842-7202-2_2

CHAPTER 2

R Language Primer
In the last chapter, we defined what data visualizations are, looked at a little bit of the

history of the medium, and explored the process for creating them. This chapter takes a

deeper dive into one of the most important tools for creating data visualizations: R.

When creating data visualizations, R is an integral tool for both analyzing data and

creating visualizations. We will use R extensively through the rest of this book, so we had

better level set first.

R is both an environment and a language to run statistical computations and

produce data graphics. It was created by Ross Ihaka and Robert Gentleman in 1993

while at the University of Auckland. The R environment is the runtime environment

that you develop and run R in. The R language is the programming language that you

develop in.

R is the successor to the S language, a statistical programming language that came

out of Bell Labs in 1976.

 Getting to Know the R Console
Let’s start by downloading and installing R. R is available from the R Foundation at

www.r-project.org/. See Figure 2-1 for a screenshot of the R Foundation home page.

https://doi.org/10.1007/978-1-4842-7202-2_2#DOI
http://www.r-project.org/

34

It is available as a precompiled binary from the Comprehensive R Archive Network

(CRAN) website: http://cran.r-project.org/ (see Figure 2-2). We just select our

operating system and what version of R we want, and we can begin to download.

Figure 2-1. Home page of the R Foundation

Chapter 2 r Language primer

http://cran.r-project.org/

35

Once the download is complete, we can run through the installer. See Figure 2-3 for a

screenshot of the R installer for macOS.

Figure 2-2. The CRAN website

Chapter 2 r Language primer

36

Once we finish the installation, we can launch the R application, and we are

presented with the R console, as shown in Figure 2-4.

Figure 2-3. R installation on a Mac

Chapter 2 r Language primer

37

 The Command Line
The R console is where the magic happens! It is a command-line environment where we

can run R expressions. The best way to get up to speed in R is to script in the console, a

piece at a time, generally to try out what you’re trying to do, and tweak it until you get the

results that you want. When you finally have a working example, take the code that does

what you want and save it as an R script file.

R script files are just files that contain pure R and can be run in the console using the

source command:

> source("someRfile.R")

Figure 2-4. The R console

Chapter 2 r Language primer

38

Looking at the preceding code snippet, we assume that the R script lives in the

current work directory. The way we can see what the current work directory is to use the

getwd() function:

> getwd()

[1] "/Users/tomjbarker"

We can also set the working directory by using the setwd() function. Note that

changes made to the working directory are not persisted across R sessions unless the

session is saved.

> setwd("/Users/tomjbarker/Downloads")

> getwd()

[1] "/Users/tomjbarker/Downloads"

 Command History
The R console stores commands that you enter and you can cycle through previous

commands by pressing the up arrow. Hit the escape button to return to the command

prompt. We can see the history in a separate window pane by clicking the Show/Hide

Command History button at the top of the console. The Show/Hide Command History

button is the rectangle icon with alternating stripes of yellow and green. See Figure 2-5

for the R console with the command history shown.

Chapter 2 r Language primer

39

 Accessing Documentation
To read the R documentation around a specific function or keyword, you simply type a

question mark before the keyword:

> ?setwd

If you want to search the documentation for a specific word or phrase, you can type

two question marks before the search query:

> ??"working directory"

This code launches a window that shows search results (see Figure 2-6). The search

result window has a row for each topic that contains the search phrase and has the name

of the help topic, the package that the functionality that the help topic talks about is in,

and a short description for the help topic.

Figure 2-5. R console with command history shown

Chapter 2 r Language primer

40

 Packages
Speaking of packages, what are they, exactly? Packages are collections of functions, data

sets, or objects that can be imported into the current session or workspace to extend

what we can do in R. Anyone can make a package and distribute it.

To install a package, we simply type this:

install.packages([package name])

Figure 2-6. Help search results window

Chapter 2 r Language primer

41

For example, if we want to install the ggplot2 package—which is a widely used and

very handy charting package—we simply type this into the console:

> install.packages("ggplot2")

We are immediately prompted to choose the mirror location that we want to use,

usually the one closest to our current location. From there, the install begins. We can see

the results in Figure 2-7.

The zipped up package is downloaded and exploded into our R installation.

Figure 2-7. Installing the ggplot2 package

Chapter 2 r Language primer

42

If we want to use a package that we have installed, we must first include it in our

workspace. To do this, we use the library() function:

> library(ggplot2)

A list of packages available at the CRAN can be found here: http://cran.r-

project.org/web/packages/available_packages_by_name.html.

To see a list of packages already installed, we can simply call the library() function

with no parameter (depending on your install and your environment, your list of

packages may vary):

> library()

Packages in library '/Library/Frameworks/R.framework/Versions/2.15/

Resources/library':

barcode Barcode distribution plots

base The R Base Package

boot Bootstrap Functions (originally by Angelo

Canty for S)

class Functions for Classification

cluster Cluster Analysis Extended Rousseeuw et al.

codetools Code Analysis Tools for R

colorspace Color Space Manipulation

compiler The R Compiler Package

datasets The R Datasets Package

dichromat Color schemes for dichromats

digest Create cryptographic hash digests of R

objects

foreign Read Data Stored by Minitab, S, SAS, SPSS,

Stata, Systat, dBase,

 ...

ggplot2 An implementation of the Grammar of

Graphics

gpairs gpairs: The Generalized Pairs Plot

graphics The R Graphics Package

grDevices The R Graphics Devices and Support for

Colours and Fonts

grid The Grid Graphics Package

Chapter 2 r Language primer

http://cran.r-project.org/web/packages/available_packages_by_name.html
http://cran.r-project.org/web/packages/available_packages_by_name.html

43

gtable Arrange grobs in tables

KernSmooth Functions for kernel smoothing for Wand &

Jones (1995)

labeling Axis Labeling

lattice Lattice Graphics

mapdata Extra Map Databases

mapproj Map Projections

maps Draw Geographical Maps

 Importing Data
So now our environment is downloaded and installed, and we know how to install any

packages that we may need. Now we can begin using R.

The first thing we’ll normally want to do is import your data. There are several ways

to import data, but the most common way is to use the read() function, which has

several flavors:

read.table("[file to read]")

read.csv(["file to read"])

To see this in action, let’s first create a text file named temptext.txt that is formatted

like so:

134,432,435,313,11

403,200,500,404,33

77,321,90,2002,395

We can read this into a variable that we will name temptxt:

> temptxt <- read.table("temptext.txt")

Notice that as we are assigning value to this variable, we are not using an equal sign

as the assignment operator. We are instead using an arrow <-. That is R’s assignment

operator, although it does also support the equal sign if you are so inclined. But the

standard is the arrow, and all examples that we will show in this book will use the arrow.

Chapter 2 r Language primer

44

If we print out the temptxt variable, we see that it is structured as follows:

> temptxt

 V1

1 134,432,435,313,11

2 403,200,500,404,33

3 77,321,90,2002,395

We see that our variable is a table-like structure called a data frame, and R has

assigned a column name (V1) and row IDs to our data structure. More on column names

soon.

The read() function has a number of parameters that you can use to refine how the

data is imported and formatted once it is imported.

 Using Headers
The header parameter tells R to treat the first line in the external file as containing

header information. The first line then becomes the column names of the data frame.

For example, suppose we have a log file structured like this:

url, day, date, loadtime, bytes, httprequests, loadtime_repeatview

http://apress.com , Sun, 01 Jul 2012 14:01:28 +0000,7042,956680,73,3341

http://apress.com , Sun, 01 Jul 2012 14:01:31 +0000,6932,892902,76,3428

http://apress.com , Sun, 01 Jul 2012 14:01:33 +0000,4157,594908,38,1614

We can load it into a variable named wpo like so:

> wpo <- read.table("wpo.txt", header=TRUE, sep=",")

> wpo

 url day date loadtime bytes httprequests loadtime_repeatview

 1. http://apress.com,Sun,1 Jul 2012 14:01:28

+0000,7042,955550,73,3191

 2. http://apress.com,Sun,1 Jul 2012 14:01:31

+0000,6932,892442,76,3728

 3. http://apress.com,Sun,1 Jul 2012 14:01:33

+0000,4157,614908,38,1514

Chapter 2 r Language primer

http://apress.com
http://apress.com
http://apress.com

45

When we call the colnames() function to see what the column names are for wpo,

we see the following:

> colnames(wpo)

[1] "url" "day" "date" "loadtime"

[5] "bytes" "httprequests" "loadtime_repeatview"

 Specifying a String Delimiter
The sep attribute tells the read() function what to use as the string delimiter for parsing

the columns in the external data file. In all the examples we’ve looked at so far, commas

are our delimiters (as we explicitly told R in the line that read in wpo), but we could use

instead pipes | or any other character that we want.

Say, for example, that our previous temptxt example used pipes; we would just

update the code to be as follows:

134|432|435|313|11

403|200|500|404|33

77|321|90|2002|395

> temptxt <- read.table("temptext.txt", sep="|")

> temptxt

 V1 V2 V3 V4 V5

 1. 134 432 435 313 11

 2. 403 200 500 404 33

 3. 77 321 90 2002 395

Oh, notice that? We actually got distinct column names this time (V1, V2, V3, V4, V5).

Before, we didn’t specify a delimiter, so R assumed that each row was one big blob of text

and lumped it into a single column (V1).

 Specifying Row Identifiers
The row.names attribute allows us to specify identifiers for our rows. By default, as we’ve

seen in the previous examples, R uses incrementing numbers as row IDs. Keep in mind

that the row names need to be unique for each row.

Chapter 2 r Language primer

46

With that in mind, let’s take a look at importing some different log data, which has

performance metrics for unique URLs:

url, day, date, loadtime, bytes, httprequests, loadtime_repeatview

http://apress.com, Sun, 01 Jul 2012 14:01:28 +0000,7042,956680,73,3341

http://google.com, Sun, 01 Jul 2012 14:01:31 +0000,6932,892902,76,3428

http://apple.com, Sun, 01 Jul 2012 14:01:33 +0000,4157,594908,38,1614

When we read it in, we’ll be sure to specify that the data in the url column should be

used as the row name for the data frame:

> wpo <- read.table("wpo.txt", header=TRUE, sep=",", row.names="url")

> wpo

 day date loadtime bytes

 httprequests loadtime_repeatview

http://apress.com Sun 01 Jul 2012 14:01:28 +0000 7042 956680

 73 3341

http://google.com Sun 01 Jul 2012 14:01:31 +0000 6932 892902

 76 3428

http://apple.com Sun 01 Jul 2012 14:01:33 +0000 4157 594908

 38 31614

 Using Custom Column Names
And there we go. But what if we want to have column names, but the first line in our file

is not header information? We can use the col.names parameter to specify a vector that

we can use as column names.

Let’s take a look. In this example, we’ll use the pipe-separated text file used

previously:

134|432|435|313|11

403|200|500|404|33

77|321|90|2002|395

Chapter 2 r Language primer

47

First, we’ll create a vector named columnNames that will hold the strings that we will

use as the column names:

> columnNames <- c("resource_id", "dns_lookup", "cache_load", "file_size",

"server_response")

Then, we’ll read in the data, passing in our vector to the col.names parameter:

> resource_log <- read.table("temptext.txt", sep="|", col.

names=columnNames)

> resource_log

 resource_id dns_lookup cache_load file_size server_response

1 134 432 435 313 11

2 403 200 500 404 33

3 77 321 90 2002 395

 Data Structures and Data Types
In the previous examples, we touched on a lot of concepts; we created variables,

including vectors and data frames; but we didn’t talk much about what they are.

Let’s take a step back and look at the data types that R supports and how to use them.

Data types in R are called modes and can be the following:

• Numeric

• Character

• Logical

• Complex

• Raw

• List

We can use the mode() function to check the mode of a variable.

Chapter 2 r Language primer

48

Character and numeric modes correspond to string and number (both integer and

float) data types. Logical modes are Boolean values.

> n <- 122132

> mode(n)

[1] "numeric"

> c <- "test text"

> mode(c)

[1] "character"

> l <- TRUE

> mode(l)

[1] "logical"

We can perform string concatenation using the paste() function. We can use the

substr() function to pull characters out of strings. Let’s look at some examples in code.

Usually, I keep a list of directories that I either read data from or write charts to.

Then when I want to reference a new data file that exists in the data directory, I will just

append the new file name to the data directory:

> dataDirectory <- "/Users/tomjbarker/org/data/"

> buglist <- paste(dataDirectory, "bugs.txt", sep="")

> buglist

[1] "/Users/tomjbarker/org/data/bugs.txt"

The paste() function takes N amount of strings and concatenates them together. It

accepts an argument named sep that allows us to specify a string that we can use to be a

delimiter between joined strings. We don’t want anything separating our joined strings

that we pass in an empty string.

If we want to pull characters from a string, we use the substr() function. The

substr() function takes a string to parse, a starting location, and a stopping location. It

returns all the character inclusively from the starting location up to the ending location.

(Remember that in R, lists are not 0 based like most other languages, but instead have a

starting index of 1.)

> substr("test", 1,2)

[1] "te"

Chapter 2 r Language primer

49

In the preceding example, we pass in the string “test” and tell the substr() function

to return the first and second characters.

Complex mode is for complex numbers. The raw mode is to store raw byte data.

List data types or modes can be one of three classes: vectors, matrices, or data

frames. If we call mode() for vectors or matrices, they return the mode of the data that

they contain; class() returns the class. If we call mode() on a data frame, it returns the

type list.

> v <- c(1:10)

> mode(v)

[1] "numeric"

> m <- matrix(c(1:10), byrow=TRUE)

> mode(m)

[1] "numeric"

> class(m)

[1] "matrix" "array"

> d <- data.frame(c(1:10))

> mode(d)

[1] "list"

> class(d)

[1] "data.frame"

Note that we just typed 1:10 rather than the whole sequence of numbers between 1

and 10:

v <- c(1:10)

Vectors are single-dimensional arrays that can hold only values of a single mode at

a time. It’s when we get to data frames and matrices that R really starts to get interesting.

The next two sections cover those classes.

 Data Frames
We saw at the beginning of this chapter that the read() function takes in external data

and saves it as a data frame. Data frames are like arrays in most other loosely typed

languages: they are containers that hold different types of data, referenced by index. The

main thing to realize, though, is that data frames see the data that they contain as rows,

columns, and combinations of the two.

Chapter 2 r Language primer

50

For example, think of a data frame as formatted as follows:

 col col col col col

row [1] [1] [1] [1] [1]

row [1] [1] [1] [1] [1]

row [1] [1] [1] [1] [1]

row [1] [1] [1] [1] [1]

If we try to reference the first index in the preceding data frame as we traditionally

would with an array, say dataframe[1], R would instead return the first column of

data, not the first item. So data frames are referenced by their column and row. So

dataframe[1] returns the first column, and dataframe[,2] returns the first row.

Let’s demonstrate this in code.

First, let’s create some vectors using the combine function, c(). Remember that

vectors are collections of data all of the same type. The combine function takes a series

of values and combines them into vectors.

> col1 <- c(1,2,3,4,5,6,7,8)

> col2 <- c(1,2,3,4,5,6,7,8)

> col3 <- c(1,2,3,4,5,6,7,8)

> col4 <- c(1,2,3,4,5,6,7,8)

Then, let’s combine these vectors into a data frame:

> df <- data.frame(col1,col2,col3,col4)

Now let’s print the data frame to see the contents and the structure of it:

> df

 col1 col2 col3 col4

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 6 6 6

7 7 7 7 7

8 8 8 8 8

Chapter 2 r Language primer

51

Notice that it took each vector and made each one a column. Also notice that each

row has an ID; by default, it is a number, but we can override that.

If we reference the first index, we see that the data frame returns the first column:

> df[1]

 col1

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

If we put a comma in front of that 1, we reference the first row:

> df[,1]

[1] 1 2 3 4 5 6 7 8

So accessing contents of a data frame is done by specifying [column, row].

Matrices work much the same way.

 Matrices
Matrices are just like data frames in that they contain rows and columns and can be

referenced by either. The core difference between the two is that data frames can hold

different data types, but matrices can hold only one type of data.

This presents a philosophical difference. Usually, you use data frames to hold data

read in externally, like from a flat file or a database because those are generally of mixed

type. You normally store data in matrices that you want to apply functions to (more on

applying functions to lists in a little bit).

Chapter 2 r Language primer

52

To create a matrix, we must use the matrix() function, pass in a vector, and tell the

function how to distribute the vector:

• The nrow parameter specifies how many rows the matrix should have.

• The ncol parameter specifies the number of columns.

• The byrow parameter tells R that the contents of the vector should be

distributed by iterating across rows if TRUE or by columns if FALSE.

> content <- c(1,2,3,4,5,6,7,8,9,10)

> m1 <- matrix(content, nrow=2, ncol=5, byrow=TRUE)

> m1

 [,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 6 7 8 9 10

>

Notice that in the previous example the m1 matrix is filled in horizontally, row by row.

In the following example, the m1 matrix is filled in vertically by column:

> content <- c(1,2,3,4,5,6,7,8,9,10)

> m1 <- matrix(content, nrow=2, ncol=5, byrow=FALSE)

> m1

 [,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

Remember that instead of manually typing out all the numbers in the previous

content vector, if the numbers are a sequence, we can just type this:

content <- (1:10)

We reference the content in matrices with the square bracket, specifying the row and

column, respectively:

> m1[1,4]

[1] 7

Chapter 2 r Language primer

53

We can convert a data frame to a matrix if the data frame contains only a single type

of data. To do this, we use the as.matrix() function. Oftentimes, we will do this when

passing a data frame to a plotting function to draw a chart.

> barplot(as.matrix(df))

In the following, we create a data frame called df. We populate the data frame with

ten consecutive numbers. We then use as.matrix() to convert df into a matrix and save

the result into a new variable called m.

> df <- data.frame(1:10)

> df

 X1.10

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

> class(df)

[1] "data.frame"

> m <- as.matrix(df)

> class(m)

[1] "matrix" "array"

Keep in mind that because they are all the same data type, matrices require less

overhead and are intrinsically more efficient than data frames. If we compare the size

of our matrix m and our data frame df, we see that with just ten items, there is a size

difference.

> object.size(m)

552 bytes

> object.size(df)

776 bytes

Chapter 2 r Language primer

54

With that said, if we increase the scale of this, the increase in efficiency does not

equally scale. Compare the following:

> big_df <- data.frame(1:40000000)

> big_m <- matrix(1:40000000)

> object.size(big_m)

160000216 bytes

> object.size(big_df)

160000736 bytes

We can see that the first example with the small data set showed that the matrix

was 30 percent smaller in size than the data frame, but at the larger scale in the second

example, the matrix was only .00018 percent smaller than the data frame.

 Adding Lists
When combining or adding to data frames or matrices, you generally add either by the

row or the column using rbind() or cbind().

To demonstrate this, let’s add a new row to our data frame df. We’ll pass df into

rbind() along with the new row to add to df. The new row contains just one element, the

number 11.

> df <- rbind(df, 11)

> df

 X1.10

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

Chapter 2 r Language primer

55

Now let’s add a new column to our matrix m. To do this, we simply pass m into

cbind() as the first parameter; the second parameter is a new matrix that will be

appended to the new column.

> m <- rbind(m, 11)

> m <- cbind(m, matrix(c(50:60), byrow=FALSE))

> m

 X1.10

[1,] 1 50

[2,] 2 51

[3,] 3 52

[4,] 4 53

[5,] 5 54

[6,] 6 55

[7,] 7 56

[8,] 8 57

[9,] 9 58

[10,] 10 59

[11,] 11 60

What about vectors, you may ask? Well, let’s look at adding to our content vector.

We simply use the combine function to combine the current vector with a new vector:

> content <- c(1,2,3,4,5,6,7,8,9,10)

> content <- c(content, c(11:20))

> content

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 Looping Through Lists
As developers who generally work in procedural languages, or at least came up the

ranks using procedural languages (though, in recent years, functional programming

paradigms have become much more mainstream), we’re most likely used to looping

through our arrays when we want to process the data within them. This is in contrast to

purely functional languages where we would instead apply a function to our lists, like

the map() function. R supports both paradigms. Let’s first look at how to loop through

our lists.

Chapter 2 r Language primer

56

The most useful loop that R supports is the for in loop. The basic structure of a for

in loop can be seen here:

> for(i in 1:5){print(i)}

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

The variable i increments in value each step through the iteration. We can use the

for in loop to step through lists. We can specify a particular column to iterate through,

like the following, in which we loop through the X1.10 column of the data frame df.

> for(n in df$X1.10){ print(n)}

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

[1] 8

[1] 9

[1] 10

[1] 11

Note that we are accessing the columns of data frames via the dollar sign operator.

The general pattern is [data frame]$[column name].

 Applying Functions to Lists
But the way that R really wants to be used is to apply functions to the contents of lists

(see Figure 2-8).

Chapter 2 r Language primer

57

We do this in R with the apply() function.

The apply() function takes several parameters:

• First is our list.

• Next, a number vector to indicate how we apply the function through

the list (1 is for rows, 2 is for columns, and c[1,2] indicates both rows

and columns).

• Last is the function to apply to the list:

apply([list], [how to apply function], [function to apply])

Let’s look at an example. Let’s make a new matrix that we’ll call m. The matrix m will

have ten columns and four rows:

> m <- matrix(c(1:40), byrow=FALSE, ncol=10)

> m

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 5 9 13 17 21 25 29 33 37

[2,] 2 6 10 14 18 22 26 30 34 38

[3,] 3 7 11 15 19 23 27 31 35 39

[4,] 4 8 12 16 20 24 28 32 36 40

Figure 2-8. Apply a function to list elements

Chapter 2 r Language primer

58

Now say we wanted to increment every number in the m matrix. We could simply use

apply() as follows:

> apply(m, 2, function(x) x <- x + 1)

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 2 6 10 14 18 22 26 30 34 38

[2,] 3 7 11 15 19 23 27 31 35 39

[3,] 4 8 12 16 20 24 28 32 36 40

[4,] 5 9 13 17 21 25 29 33 37 41

Do you see what we did there? We passed in m, we specified that we wanted to apply

the function across the columns, and finally we passed in an anonymous function. The

function accepts a parameter that we called x. The parameter x is a reference to the

current matrix element. From there, we just increment the value of x by 1.

OK, say we wanted to do something slightly more interesting, such as zeroing out all

the even numbers in the matrix. We could do the following:

> apply(m,c(1,2),function(x){if((x %% 2) == 0) x <- 0 else x <- x})

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 5 9 13 17 21 25 29 33 37

[2,] 0 0 0 0 0 0 0 0 0 0

[3,] 3 7 11 15 19 23 27 31 35 39

[4,] 0 0 0 0 0 0 0 0 0 0

For the sake of clarity, let’s break out that function that we are applying. We simply

check to see whether the current element is even by checking to see whether it has a

remainder when divided by two. If it is, we set it to zero; if it isn’t, we set it to itself:

function(x){

 if((x %% 2) == 0)

 x <- 0

 else

 x <- x

}

Chapter 2 r Language primer

59

 Functions
Speaking of functions, the syntax for creating functions in R is much like most other

languages. We use the function keyword, give the function a name, have open and

closed parentheses where we specify arguments, and wrap the body of the function in

curly braces:

function [function name]([argument])

{

 [body of function]

}

Something interesting that R allows is the ... argument (sometimes called the dots

argument). This allows us to pass in a variable number of parameters into a function.

Within the function, we can convert the ... argument into a list and iterate over the list

to retrieve the values within:

> offset <- function (...){

 for(i in list(...)){

 print(i)

 }

}

> offset(23,11)

[1] 23

[1] 11

We can even store values of different data types (modes) in the ... argument:

> offset("test value", 12, 100, "19ANM")

[1] "test value"

[1] 12

[1] 100

[1] "19ANM"

R uses lexical scoping. This means that when we call a function and try to reference

variables that are not defined inside the local scope of the function, the R interpreter

looks for those variables in the workspace or scope in which the function was created. If

the R interpreter cannot find those variables in that scope, it looks in the parent of that

scope.

Chapter 2 r Language primer

60

If we create a function A within function B, the creation scope of function A is

function B. For example, see the following code snippet:

> x <- 10

> wrapper <- function(y){

 x <- 99

 c<- function(y){

 print(x + y)

 }

 return(c)

}

> t <- wrapper()

> t(1)

[1] 100

> x

[1] 10

We created a variable x in the global space and gave it a value of 10. We created

a function, named it wrapper, and had it accept an argument named y. Within the

wrapper() function, we created another variable named x and gave it a value of 99. We

also created a function named c. The function wrapper() passes the argument y into

the function c(), and the c() function outputs the value of x added to y. Finally, the

wrapper() function returns the c() function.

We created a variable t and set it to the returned value of the wrapper() function,

which is the function c(). When we run the t() function and pass in a value of 1, we see

that it outputs 100 because it is referencing the variable x from the function wrapper().

Being able to reach into the scope of a function that has executed is called a closure.

But, you may ask, how can we be sure that we are executing the returned function

and not rerunning wrapper() each time? R has a very nice feature where if you type in

the name of a function without the parentheses, the interpreter will output the body of

the function.

Chapter 2 r Language primer

61

When we do this, we are in fact referencing the returned function and using a closure

to reference the x variable:

> t

function(y){

 print(x + y)

 }

<environment: 0x17f1d4c4>

 Summary
In this chapter, we downloaded and installed R. We explored the command line, went

over data types, and got up and running importing into the R environment data for

analysis. We looked at lists, how to create them, add to them, loop through them, and to

apply functions to elements in a list.

We looked at functions, talked about lexical scope, and saw how to create

closures in R.

Next chapter, we’ll take a deeper dive into R, look at objects, get our feet wet with

statistical analysis in R, and explore creating R Markdown documents for distribution

over the Web.

Chapter 2 r Language primer

63
© Tom Barker, Jon Westfall 2022
T. Barker and J. Westfall, Pro Data Visualization Using R and JavaScript,
https://doi.org/10.1007/978-1-4842-7202-2_3

CHAPTER 3

A Deeper Dive into R
The last chapter explored some introductory concepts in R, from using the console to

importing data. We installed packages and discussed data types, including different list

types. We finished up by talking about functions and creating closures.

This chapter will look at object-oriented concepts in R, explore concepts in statistical

analysis, and finally see how R can be incorporated into R Markdown for real-time

distribution.

 Object-Oriented Programming in R
R supports two different systems for creating objects: the S3 and S4 methods. S3 is the

default way that objects are handled in R. We’ve been using and making S3 objects with

everything that we’ve done so far. S4 is a newer way to create objects in R that has more

built-in validation, but more overhead. Let’s take a look at both methods.

OK, so traditional, class-based, object-oriented design is characterized by creating

classes that are the blueprint for instantiated objects (see Figure 3-1).

Figure 3-1. The matrix class is used to create the variables m1 and m2, both
matrices

https://doi.org/10.1007/978-1-4842-7202-2_3#DOI

64

At a very high level, in traditional object-oriented languages, classes can extend other

classes to inherit the parent class’ behavior, and classes can also implement interfaces,

which are contracts defining what the public signature of the object should be. See

Figure 3-2 for an example of this, in which we create an IUser interface that describes

what the public interface should be for any user type class, and a BaseUser class that

implements the interface and provides a base functionality. In some languages, we

might make BaseUser an abstract class, a class that can be extended but not directly

instantiated. The User and SuperUser classes extend BaseClass and customize the

existing functionality for their own purposes.

There also exists the concept of polymorphism, in which we can change functionality

via the inheritance chain. Specifically, we would inherit a function from a base class but

override it, keep the signature (the function name, the type and amount of parameters

it accepts, and the type of data that it returns) the same, but change what the function

does. Compare overriding a function to the contrasting concept of overloading a

function, in which the function would have the same name but a different signature and

functionality.

 S3 Classes
S3, so called because it was first implemented in version 3 of the S language, uses a

concept called generic functions. Everything in R is an object, and each object has

a string property called class that signifies what the object is. There is no validation

Figure 3-2. An IUser interface implemented by a superclass BaseUser that the
subclasses User and SuperUser extend

Chapter 3 a Deeper Dive into r

65

around it, and we can overwrite the class property ad hoc. That’s the main problem

with S3—the lack of validation. If you ever had an esoteric error message returned when

trying to use a function, you probably experienced the repercussions of this lack of

validation firsthand. The error message was probably generated not from R detecting

that an incorrect type had been passed in, but from the function trying to execute with

what was passed in and failing at some step along the way.

See the following code, in which we create a matrix and change its class to be a

vector:

> m <- matrix(c(1:10), nrow=2)

> m

 [,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

> class(m) <- "vector"

> m

 [,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

attr(,"class")

[1] "vector"

Generic functions are objects that check the class property of objects passed into

them and exhibit different behavior based on that attribute. It’s a nice way to implement

polymorphism. We can see the methods that a generic function uses by passing the

generic function to the methods() function. The following code shows the methods of

the plot() generic function:

> methods(plot)

[1] plot.acf* plot.data.frame* plot.decomposed.ts*

 plot.default plot.dendrogram*

[6] plot.density plot.ecdf plot.factor*

 plot.formula* plot.function

[11] plot.hclust* plot.histogram* plot.HoltWinters*

 plot.isoreg* plot.lm

[16] plot.medpolish* plot.mlm plot.ppr*

 plot.prcomp* plot.princomp*

Chapter 3 a Deeper Dive into r

66

[21] plot.profile.nls* plot.spec plot.stepfun

 plot.stl* plot.table*

[26] plot.ts plot.tskernel* plot.TukeyHSD

Non-visible functions are asterisked

Notice that within the generic plot() function is a myriad of methods to handle all

the different types of data that could be passed to it, such as plot.data.frame for when

we pass a data frame to plot(); or if we want to plot a TukeyHSD object plot(), plot.

TukeyHSD is ready for us.

Note type ?TukeyHSD for more information on this object.

Now that you know how S3 object-oriented concepts work in R, let’s see how to

create our own custom S3 objects and generic functions.

An S3 class is a list of properties and functions with an attribute named class. The

class attribute tells generic functions how to treat objects that implement a particular

class. Let’s create an example using the UserClass idea from Figure 3-2:

> tom <- list(userid = "tbarker", password = "password123",

playlist=c(12,332,45))

> class(tom) <- "user"

We can inspect our new object by using the attributes() function, which tells us

the properties that the object has as well as its class:

> attributes(tom)

$names

[1] "userid" "password" "playlist"

$class

[1] "user"

Chapter 3 a Deeper Dive into r

67

Now to create generic functions that we can use with our new class, start by creating

a function that will handle only our user object; then generalize it so any class can use it.

It will be the createPlaylist() function, and it will accept the user on which to perform

the operation and a playlist to set. The syntax for this is [function name].[class

name]. Note that we access the properties of S3 objects using the dollar sign.

>createPlaylist.user <- function(user, playlist=NULL){

 user$playlist <- playlist

 return(user)

}

Note that while you type directly into the console, R enables you to span several lines

without executing your input until you complete an expression. After your expression is

complete, it will be interpreted. If you want to execute several expressions at once, you

can copy and paste into the command line.

Let’s test it to make sure it works as desired. It should set the playlist property of

the passed-in object to the vector that is passed in:

> tom <- createPlaylist.user(tom, c(11,12))

> tom

$userid

[1] "tbarker"

$password

[1] "password123"

$playlist

[1] 11 12

attr(,"class")

[1] "user"

Excellent! Now let’s generalize the createPlaylist() function to be a generic

function. To do this, we just create a function named createPlaylist and have it accept

an object and a value. Within our function, we use the UseMethod() function to delegate

functionality to our class-specific createPlaylist() function: createPlaylist.user.

Chapter 3 a Deeper Dive into r

68

The UseMethod() function is the core of generic functions: it evaluates the object,

determines its class, and dispatches to the correct class-specific function:

> createPlaylist <- function(object, value)

{

 UseMethod("createPlaylist", object)

}

Now let’s try it out to see whether it worked:

> tom <- createPlaylist(tom, c(21,31))

> tom

$userid

[1] "tbarker"

$password

[1] "password123"

$playlist

[1] 21 31

attr(,"class")

[1] "user"

Excellent!

 S4 Classes
Let’s look at S4 objects. Remember that the main complaint about S3 is the lack of

validation. S4 addresses this lack by having overhead built into the class structure. Let’s

take a look.

First, we’ll create the user class. We do this with the setClass() function.

• The first parameter in the setClass() function is a string that

signifies the name of the class that we are creating.

• The next parameter is called representation, and it is a list of named

properties.

Chapter 3 a Deeper Dive into r

69

setClass("user",

representation(userid="character",

 password="character",

 playlist="vector"

)

)

We can test it by creating a new object from this class. We use the new() function to

create a new instance of the class:

> lynn <- new("user", userid="lynn", password="test", playlist=c(1,2))

> lynn

An object of class "user"

Slot "userid":

[1] "lynn"

Slot "password":

[1] "test"

Slot "playlist":

[1] 1 2

Very nice. Note that for S4 objects, we use the @ symbol to reference properties of

objects:

> lynn@playlist

[1] 1 2

> class(lynn)

[1] "user"

attr(,"package")

[1] ".GlobalEnv

Let’s create a generic function for this class by using the setMethod() function. We

simply pass in the function name, the class name, and then an anonymous function that

will serve as the generic function:

> setMethod("createPlaylist", "user", function(object, value){

 object@playlist <- value

 return(object)

 })

Chapter 3 a Deeper Dive into r

70

Creating a generic function from function 'createPlaylist' in the global

environment

[1] "createPlaylist"

>

Let’s try it out:

> lynn <- createPlaylist(lynn, c(1001, 400))

> lynn

An object of class "user"

Slot "userid":

[1] "lynn"

Slot "password":

[1] "test"

Slot "playlist":

[1] 1001 400

Excellent!

Although some prefer the simplicity and flexibility of the S3 way, some prefer the

structure of the S4 method; the choice of S3 or S4 objects is purely one of personal

preference. My own preference is for the simplicity of S3, and that is what we will be

using for the remainder of the book. Google, in its R Style Guide available at https://

google.github.io/styleguide/Rguide.html, mirrors my own feelings about S3,

saying “Use S3 objects and methods unless there is a strong reason to use S4 objects or

methods.”

 Statistical Analysis with Descriptive Metrics in R
Now let’s take a look at some concepts in statistical analysis and how to implement

them in R. You might remember most of the concepts covered in this chapter from an

introductory statistics class from college; they are the base concepts needed to begin to

think about and discuss your data.

First, let’s get some data on which we’ll perform statistical analysis. R comes

preloaded with a number of data sets that we can use as sample data. To see a list

of available data sets with your install, simply type data() at the console. You’ll be

presented with the screen that you see in Figure 3-3.

Chapter 3 a Deeper Dive into r

https://google.github.io/styleguide/Rguide.html
https://google.github.io/styleguide/Rguide.html

71

To see the contents of a data set, you can call it by name in the console. Let’s take a

look at the USArrests data set, which we’ll use for the next few topics.

> USArrests

 Murder Assault UrbanPop Rape

Alabama 13.2 236 58 21.2

Alaska 10.0 263 48 44.5

Arizona 8.1 294 80 31.0

Arkansas 8.8 190 50 19.5

California 9.0 276 91 40.6

Colorado 7.9 204 78 38.7

Figure 3-3. Available data sets in R

Chapter 3 a Deeper Dive into r

72

Connecticut 3.3 110 77 11.1

Delaware 5.9 238 72 15.8

Florida 15.4 335 80 31.9

Georgia 17.4 211 60 25.8

Hawaii 5.3 46 83 20.2

Idaho 2.6 120 54 14.2

Illinois 10.4 249 83 24.0

Indiana 7.2 113 65 21.0

Iowa 2.2 56 57 11.3

Kansas 6.0 115 66 18.0

Kentucky 9.7 109 52 16.3

Louisiana 15.4 249 66 22.2

Maine 2.1 83 51 7.8

Maryland 11.3 300 67 27.8

Massachusetts 4.4 149 85 16.3

Michigan 12.1 255 74 35.1

Minnesota 2.7 72 66 14.9

Mississippi 16.1 259 44 17.1

Missouri 9.0 178 70 28.2

Montana 6.0 109 53 16.4

Nebraska 4.3 102 62 16.5

Nevada 12.2 252 81 46.0

New Hampshire 2.1 57 56 9.5

New Jersey 7.4 159 89 18.8

New Mexico 11.4 285 70 32.1

New York 11.1 254 86 26.1

North Carolina 13.0 337 45 16.1

North Dakota 0.8 45 44 7.3

Ohio 7.3 120 75 21.4

Oklahoma 6.6 151 68 20.0

Oregon 4.9 159 67 29.3

Pennsylvania 6.3 106 72 14.9

Rhode Island 3.4 174 87 8.3

South Carolina 14.4 279 48 22.5

South Dakota 3.8 86 45 12.8

Chapter 3 a Deeper Dive into r

73

Tennessee 13.2 188 59 26.9

Texas 12.7 201 80 25.5

Utah 3.2 120 80 22.9

Vermont 2.2 48 32 11.2

Virginia 8.5 156 63 20.7

Washington 4.0 145 73 26.2

West Virginia 5.7 81 39 9.3

Wisconsin 2.6 53 66 10.8

Wyoming 6.8 161 60 15.6

>

The first function in R that we’ll look at is the summary() function, which accepts an

object and returns the following key descriptive metrics, grouped by column:

• Minimum value

• Maximum value

• Median for numbers and frequency for strings

• Mean

• First quartile

• Third quartile

Let’s run the USArrests data set through the summary() function:

> summary(USArrests)

 Murder Assault UrbanPop Rape

Min. : 0.800 Min. : 45.0 Min. :32.00 Min. : 7.30

1st Qu.: 4.075 1st Qu.:109.0 1st Qu.:54.50 1st Qu.:15.07

Median : 7.250 Median :159.0 Median :66.00 Median :20.10

Mean : 7.788 Mean :170.8 Mean :65.54 Mean :21.23

3rd Qu.:11.250 3rd Qu.:249.0 3rd Qu.:77.75 3rd Qu.:26.18

Max. :17.400 Max. :337.0 Max. :91.00 Max. :46.00

Let’s look at each of these metrics in detail, as well as the standard deviation.

Chapter 3 a Deeper Dive into r

74

 Median and Mean
Note that the median is the number that is the middle value in a data set, quite literally

the number that has the same amount of numbers greater and less than itself in the data

set. If our data set looks like the following, the median is 3:

1, 2, 3, 4, 5

But notice that it’s easy to find the median when there are an odd number of items in

a data set. Suppose that there is an even number of items in a data set, as follows:

1, 2, 3, 4, 5, 6

In this case, we take the middle pair, 3 and 4, and get the average of those two

numbers. The median is 3.5.

Why does the median matter? When you look at a data set, there are usually outliers

at either end of the spectrum, values that are much higher or much lower than the rest

of the data set. Gathering the median value excludes these outliers, giving a much more

realistic view of the average values.

Contrast this idea with the mean, which is simply the sum of the values in a data

set divided by the number of items. The values include the outliers, so the mean can be

skewed by having significant outliers and really represent the full data set.

For example, look at the following data set:

1, 2, 3, 4, 30

The median is still 3 for this data set, but the mean is 8, because of this:

median = [1,2] 3 [4,30]
mean = 1 + 2 + 3 + 4 + 30 = 40
 40 / 5 = 8

 Quartiles
The median is the center of the data set, which means that the median is the second

quartile. Quartiles are the points that divide a data set into four even sections. We can

use the quantile() function to pull just the quartiles from our data set.

> quantile(USArrests$Murder)
 0% 25% 50% 75% 100%
0.800 4.075 7.250 11.250 17.400

Chapter 3 a Deeper Dive into r

75

The summary() function simply returns the quartiles, as well as the minimum,

maximum, and mean values. Here are the summary() results for comparison, with the

previous quartiles highlighted:

> summary(USArrests)

 Murder Assault UrbanPop Rape

Min. : 0.800 Min. : 45.0 Min. :32.00 Min. : 7.30

1st Qu.: 4.075 1st Qu.:109.0 1st Qu.:54.50 1st Qu.:15.07

Median : 7.250 Median :159.0 Median :66.00 Median :20.10

Mean : 7.788 Mean :170.8 Mean :65.54 Mean :21.23

3rd Qu.:11.250 3rd Qu.:249.0 3rd Qu.:77.75 3rd Qu.:26.18

Max. :17.400 Max. :337.0 Max. :91.00 Max. :46.00

 Standard Deviation
Speaking of the idea of the mean, there is also the idea that data has a normal

distribution or that data is normally densely clustered around the mean with lighter

groupings above and below the mean. This is usually demonstrated with a bell curve, in

which the mean is the top of the curve and the outliers are distributed on either end of it

(see Figure 3-4).

Figure 3-4. The bell curve of a normal distribution

Chapter 3 a Deeper Dive into r

76

Standard deviation is a unit of measurement that describes the average of how far

apart the data is distributed from the mean, so we can detail how far each data point is

from the mean in terms of standard deviations.

In R, we can determine the standard deviation using the sd() function. The sd()

function expects a vector of numeric values:

> sd(USArrests$Murder)

[1] 4.35551

If we want to gather the standard deviation for a matrix, we can use the sapply()

function to apply the sd() function, like so:

> sapply(USArrests, sd)

 Murder Assault UrbanPop Rape murderRank

4.355510 83.337661 14.474763 9.366385 14.574930

 RStudio IDE
If you prefer to develop in an integrated development environment (IDE) instead of at

the command line, you can use a free product called RStudio IDE. The RStudio IDE is

made by the RStudio company and is much more than just an IDE (as you will soon see).

The RStudio company was founded by JJ Allaire, creator of ColdFusion. RStudio IDE is

available for download at www.rstudio.com/ide/ (see Figure 3-5 for a screenshot of the

download page).

Chapter 3 a Deeper Dive into r

http://www.rstudio.com/ide/

77

Note You should install the rStudio iDe now because you will use it in the
remainder of this chapter.

After installation, the IDE is split into four panes (see Figure 3-6).

Figure 3-5. RStudio IDE home page

Chapter 3 a Deeper Dive into r

78

The upper-left pane is the R script file in which we edit our R source code. The

bottom-left pane is the R command line. The upper-right side pane holds the command

history as well as all the objects in our current workspace. The bottom-right pane is split

into tabs that can show the following:

• Contents of the file system for the current working directory

• Plots or charts that have been generated

• Current packages installed

• R help pages

Although it is great to have everything that you need in one place, here is where

things become really interesting.

 R Markdown
In version 0.96 of RStudio, the team announced support for R Markdown using the knitr

package. We can now embed R code into markdown documents that can get interpreted

by knitr into HTML (HyperText Markup Language). But it gets even better.

Figure 3-6. RStudio Interface

Chapter 3 a Deeper Dive into r

79

The RStudio company also makes a product called RPubs that allows users to create

accounts and host their R Markdown files for distribution over the Web.

Note Markdown is a plain text markup language created by John Gruber and
aaron Swartz. in markdown, you can use simple and lightweight text encodings to
signify formatting. the markdown document is read and interpreted and an htML
file is output.

A quick overview of markdown syntax follows:

header 1

=========

header 2

###header 3

####header 4

italic

bold

[link text]([URL])

![alt text]([path to image])

The great thing about R Markdown is that we can embed R code within our

markdown document. We embed R using three tick marks and the letter r in curly

braces:

```{r}

[R code]

```

We need three things to begin creating R Markdown (.rmd) documents:

• R

• R Studio IDE version 0.96 or higher

• The knitr package

The knitr package is used to reformat R into several different output formats,

including HTML, markdown, or even plain text.

Chapter 3 a Deeper Dive into r

80

Note information about the knitr package is available at http://yihui.name/
knitr/.

Because you already have R and RStudio IDE installed, you will first install knitr. R

Studio IDE has a nice interface to install packages: simply go to the Tools file menu, and

click Install Packages. You should see the pop-up that is shown in Figure 3-7, in which

you can specify the package name (R Studio IDE has a nice type ahead here for package

discovery) and what library to install to.

After knitr is installed, you need to close and relaunch RStudio IDE. You then go to

the File menu, and choose File ➤ New, in which you should see a number of options,

including R Markdown. If you choose R Markdown, and choose the default option of

“Document” and “HTML” as the Default Output Format, you get a new file with the

template shown in Figure 3-8.

Figure 3-7. Installing the knitr package

Chapter 3 a Deeper Dive into r

http://yihui.name/knitr/
http://yihui.name/knitr/

81

The R Markdown template has the following code:

title: "Untitled"

output: html_document

```{r setup, include=FALSE}

knitr::opts_chunk$set(echo = TRUE)

```

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for

authoring HTML, PDF, and MS Word documents. For more details on using R

Markdown, see <http://rmarkdown.rstudio.com>.

Figure 3-8. RStudio IDE

Chapter 3 a Deeper Dive into r

82

When you click the **Knit** button, a document will be generated that

includes both content and the output of any embedded R code chunks within

the document. You can embed an R code chunk like this:

```{r cars}

summary(cars)

```

Including Plots

You can also embed plots, for example:

```{r pressure, echo=FALSE}

plot(pressure)

```

Note that the `echo = FALSE` parameter was added to the code chunk to

prevent printing of the R code that generated the plot.

This is the template, and when you click the Knit button, you will see the output

shown in Figure 3-9.

Figure 3-9. HTML output of RMarkdown template

Chapter 3 a Deeper Dive into r

83

Did you notice the Publish button at the top of Figure 3-9? That is how we push our R

Markdown file to RPubs for hosting and distribution over the Web.

 RPubs
RPubs is a free web publishing platform for R Markdown files, provided by RStudio (the

company). You can create a free account by visiting www.rpubs.com. Figure 3-10 shows a

screenshot of the RPubs home page.

Just click the Register button, and fill out the form to create your free account.

RPubs is fantastic; it’s a platform in which we can post our R Markdown documents for

distribution.

Figure 3-10. RPubs home page

Chapter 3 a Deeper Dive into r

http://www.rpubs.com

84

Caution Be aware that every file you put up on rpubs is publicly available, so be
sure not to put any sensitive or proprietary information in it. if you don’t want to put
your r Markdown files where they are available for the whole world to see, you can
instead click the Save as button right next to the publish button to save the file as
regular htML.

After you click the Publish button, you are prompted to log in with your RPubs

account. After logging in, you will be directed to the Document Details page, as seen in

Figure 3-11.

After filling out the document details, a title for your document, and a description,

you will be directed to your document hosted in RPubs. See Figure 3-12 for the

template from Figure 3-9 hosted in RPubs and available publicly here: www.rpubs.com/

tomjbarker/3370.

Figure 3-11. Publishing to RPubs

Chapter 3 a Deeper Dive into r

http://www.rpubs.com/tomjbarker/3370
http://www.rpubs.com/tomjbarker/3370

85

This is a powerful distribution method for R documents and for communicating

data visualizations. In the coming chapters, we will put all the completed R charts up on

RPubs for public consumption.

 Summary
This chapter explored some deeper concepts in R, from the different models of object-

oriented design available to how to do statistical analysis with R. We even looked at

how to use RMarkdown and RPubs to make data visualizations in R available for public

distribution.

In the next chapter, we will look at D3, a JavaScript library that enables us to analyze

and visualize data within the browser and add interactivity to visualizations.

Figure 3-12. RMarkdown template published to RPubs

Chapter 3 a Deeper Dive into r

87
© Tom Barker, Jon Westfall 2022
T. Barker and J. Westfall, Pro Data Visualization Using R and JavaScript,
https://doi.org/10.1007/978-1-4842-7202-2_4

CHAPTER 4

Data Visualization with D3
Thus far, when we have been talking about technologies used to create data

visualizations, we’ve been talking about R. We’ve spent the last two chapters exploring

the R environment and learning about the command line. We covered introductory

topics in the R language, ranging from data types, functions, and object-oriented

programming. We even talked about how to publish our R documents to the Web

using RPubs.

This chapter we will look at a JavaScript library called D3 that is used to create

interactive data visualizations. First is a very quick primer on HTML, CSS, and JavaScript,

the supporting languages of D3, to level set. Then we’ll dig into D3 and explore how to

make some of the more commonly used charts in D3.

 Preliminary Concepts
D3 is a JavaScript library. Specifically, that means it is written in JavaScript and

embedded in an HTML page. We can reference the objects and functions in D3 in our

own JavaScript code. So let’s start at the beginning. The purpose of the next section is not

to take a deep dive into HTML CSS and JavaScript; there are plenty of other resources for

that, including Foundation Website Creation that I helped to co-write. The purpose is to

have a very high-level recap of concepts that we will deal with directly with D3. If you are

already familiar with HTML, CSS, and JavaScript, you can skip down to the “History of

D3” section of this chapter.

https://doi.org/10.1007/978-1-4842-7202-2_4#DOI

88

 HTML
HTML is a markup language; in fact, it stands for HyperText Markup Language. It is a

presentation language, made up of elements that signify formatting and layout. Elements

contain attributes that have values that specify details about the element, tags, and

content. To explain, let’s look at our basic HTML skeletal structure that we will use for

most of our examples in this chapter:

<!DOCTYPE html>

<html>

<head></head>

<body></body>

</html>

Let’s start at the first line. That is the doctype that tells the browser’s render engine

what rule set to use. Browsers can support multiple versions of HTML, and each version

has a slightly different rule set. The doctype specified here is the HTML5 doctype.

Another example of a doctype is this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"" http://www.w3.org/TR/

xhtml11/DTD/xhtml11.dtd ">

This is the doctype for XHTML 1.1. Notice that it specifies the URL of the document

type definition (.dtd). If we were to read the plain text at the URL, we would see that it is

a specification for how to parse HTML tags. The W3C maintains a list of doctypes here:

www.w3.org/QA/2002/04/valid- dtd- list.html.

MODERN BROWSER ARCHITECTURE

Modern browsers are composed of modular pieces that encapsulate very specific functionality.

These modules can also be licensed out and embedded in other applications:

• They have a UI layer that handles drawing the user interface of the browser, like

the window, the status bar, and the back button.

• They have render engines to parse, tokenize, and paint the HTML.

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

http://www.w3.org/QA/2002/04/valid-dtd-list.html

89

• They have a network layer to handle the network operations involved in

retrieving the HTML and all the assets on the page.

• They have a Javascript engine to interpret and execute the Javascript in

the page.

see Figure 4-1 for a representation of this architecture.

Back to the skeletal HTML structure. The next line is the <html> tag; this is the

root- level tag for the document and holds every other HTML element that we will use.

Notice that there is a closing tag on the last line of the document.

Next is the <head> tag, which is a container that generally holds information that

is not displayed on the page (e.g., the title and meta-information). After the <head> tag

is the <body> tag, which is a container that holds all the HTML elements that will be

displayed on the page, for example, paragraphs:

<p> this is a paragraph </p>

or links:

link text or image here

Figure 4-1. Modern Browser Architecture

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

90

or images:

When it comes to D3, most of the JavaScript that we will be writing will be in the

body section, and most of the CSS will be in the head section.

 CSS
CSS stands for Cascading Style Sheets and is what is used to style the HTML elements

on a web page. Style sheets are either contained in <style> tags or linked externally via

<link> tags and are comprised of style rules and selectors. Selectors target the element

on the web page to style, and the style rule defines what styles to apply. Let’s look at an

example:

<style>

p{

 color: #AAAAAA;

}

</style>

In the preceding code snippet, the style sheet is in a style tag. The p is the

selector that tells the browser to target every paragraph tag on the web page. The

style rule is wrapped in curly braces and is made up of properties and values.

This case sets the color of the text in all the paragraphs to #AAAAAA which is the

hexadecimal value of a light gray.

Selectors are where the real nuance of CSS is. This is relevant to us because D3 also

uses CSS selectors to target elements. Similar to how S3/S4 classes can inherit from

each other in R, we can get very specific with selectors and target elements by class or

id, or we can use pseudo-classes to target abstract concepts such as when an element

is hovered over. We can target ancestors and descendants of elements, up and down

the DOM.

Note The DoM stands for the Document object Model and is the application
programming interface (apI) that allows Javascript to interact with the HTML
elements that are on a web page.

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

91

.classname{

/* style sheet for a class*/

}

#id{

/*style sheet for an id*/

}

element:pseudo-class{

}

 SVG
The next introductory concept for D3 is SVG, which stands for Scalable Vector Graphics.

SVG, which is a standardized way to create vector graphics in the browser, is what D3

uses to create data visualizations. The core functionality that we are concerned about in

SVG is the capability to draw shapes and text and integrate them into the DOM so that

our shapes can be scripted via JavaScript.

Note Vector graphics are graphics that are created using points and lines that
are mathematically calculated and displayed by the rendering engine. Contrast
this idea with bitmap or raster graphics in which the pixel display is prerendered.
Vectors, as they are simply equations, tend to scale better and are smaller.
However, they lack the depth that bitmap or raster graphics will have.

SVG is essentially its own markup language with its own doctype. We can write SVG

in external .svg files or include the SVG tags directly in our HTML. Writing the SVG tags

in our HTML page allows us to interact with our shapes via JavaScript.

SVG has support for predefined shapes as well as the capability to draw lines. The

predefined shapes in SVG are these:

• <rect> to draw rectangles

• <circle> to draw circles

• <ellipse> to draw ellipses

• <line> to draw lines; also <polyline> and <polygon> to draw lines

with multiple points

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

92

Let’s look at some code examples. If we will write our SVG into an HTML document,

we use the <svg> tag to wrap our shapes. The <svg> takes the xmlns and version

attributes. The xmlns attribute should be the path to the SVG namespace, and the

version is obviously the version of SVG:

<svg xmlns=" http://www.w3.org/2000/svg " version="1.1">

</svg>

If we are writing stand-alone .svg files, we include the full doctype and xml tags to

the page file:

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" " http://www.w3.org/

Graphics/SVG/1.1/DTD/svg11.dtd ">

<svg xmlns=" http://www.w3.org/2000/svg " version="1.1">

</svg>

Either way, we create our shapes within the <svg> tag. Let’s create some sample

shapes in our <svg> tag:

<svg xmlns=" http://www.w3.org/2000/svg " version="1.1" viewBox="0 0 500 500">

 <rect x="10" y="10" width="10" height="100" stroke="#000000"

fill="#AAAAAA" />

 <circle cx="70" cy="50" r="40" stroke="#000000" fill="#AAAAAA" />

 <ellipse cx="230" cy="60" rx="100" ry="50" stroke="#000000"

fill="#AAAAAA" />

</svg>

This code produces the shapes shown in Figure 4-2.

Figure 4-2. A rectangle, circle, and ellipse drawn in SVG

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

93

Notice that we assign x and y coordinates for all the shapes—in the case of the circle

and ellipse cx and cy coordinates—as well as fill color and stroke colors. This is just

the smallest taste; we can also create gradients and filters and then apply them to our

shapes. We can also create text to use in our SVG drawings using the <text> tag.

Let’s take a look. We’ll update the preceding SVG code to add text labels for each shape:

<svg xmlns=" http://www.w3.org/2000/svg " version="1.1" viewBox="0 0

500 500">

 <rect x="80" y="20" width="10" height="100" stroke="#000000"

fill="#AAAAAA" />

 <text x="55" y="145" fill="#000000">rectangle</text>

 <circle cx="170" cy="60" r="40" stroke="#000000" fill="#AAAAAA" />

 <text x="150" y="145" fill="#000000">circle</text>

 <ellipse cx="330" cy="70" rx="100" ry="50" stroke="#000000"

fill="#AAAAAA" />

 <text x="295" y="145" fill="#000000">ellipse</text>

</svg>

This code creates the drawing shown in Figure 4-3.

Now we can start to see the possibilities of creating data visualizations with just these

fundamental building blocks. Because D3 is a JavaScript library, and most of the work we

will be doing with D3 will be in JavaScript, let’s next take a high-level look at JavaScript

before we delve into D3.

Figure 4-3. SVG shapes with text labels

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

94

 JavaScript
JavaScript is the scripting language of the Web. JavaScript can be included in an HTML

document either by placing script tags inline in the document or by linking to an

external JavaScript document:

<script>

//javascript goes here

</script>

<script src="pathto.js"></script>

JavaScript can be used to process information, react to events, and interact with the

DOM. In JavaScript, we create variables using the var keyword.

var foo = "bar";

Note that if we do not use the var keyword, the variable that we create is assigned to

the global scope. We don’t want to do this because our globally scoped variable could

then be overwritten by any other code on our web page.

JavaScript looks much like other C-based languages in that each expression ends in

a semicolon, and blocks of code such as function and conditional bodies are wrapped in

curly braces.

Conditional statements are generally if-else statements formatted as follows:

if([condition]){

 [code to execute]

}else{

 [code to execute]

}

Functions are formatted like so:

function [function name] ([arguments]){

 [code to execute]

}

We access DOM elements in JavaScript usually by referencing the element by its id

attribute. We do this like using the getElementById() function:

var header = document.getElementById("header");

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

95

The preceding code stores a reference to the element on the web page that has an

ID of header. We can then update properties of this element, including adding new

elements or removing the element altogether.

Objects in JavaScript are generally object literals, meaning that we craft them at

runtime, composed of properties and methods. We create object literals like so:

var myObj = {

 myProp: 20,

 myfunc: function(){

 }

}

We reference properties and methods of objects using the dot operator:

myObj.myprop = 10;

See, that was fast and painless. OK, on to D3!

 History of D3
D3 stands for Data-Driven Documents and is a JavaScript library used to create

interactive data visualizations. The seed of the idea that would become D3 started in

2009 as Protovis, created by Mike Bostock, Vadim Ogievetsky, and Jeff Heer while they

were with the Stanford Visualization Group.

Note Information on the stanford Visualization Group can be found at its website:
http://vis.stanford.edu/. The original white paper for protovis can be
found at http://vis.stanford.edu/papers/protovis.

Protovis was a JavaScript library that provided an interface for creating different

types of visualizations. The root namespace was pv, and it provided an API for

creating bars and dots and areas, among other things. Like D3, Protovis used SVG to

create these shapes, but unlike D3, it wrapped the SVG calls in its own proprietary

nomenclature.

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

http://vis.stanford.edu/
http://vis.stanford.edu/papers/protovis

96

Protovis was abandoned in 2011, so its creators could take their learning and instead

create and focus on D3. There is a difference in philosophy between Protovis and D3.

Where Protovis aimed to provide wrapped functionality for creating data visualizations,

D3 instead facilitates and streamlines the creation of data visualization by working with

existing web standards and nomenclature. In D3, we create rectangles and circles in

SVG, just facilitated by the syntactic sugar of D3.

 Using D3
The first thing we need to do to get working with D3 is to go to the D3 website,

http://d3js.org/, and download the latest version (see Figure 4-4).

After that is installed, you can set up a project.

Figure 4-4. D3 home page

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

http://d3js.org/

97

 Setting Up a Project
We can include the .js file directly on our page, like so:

<script src="d3.v3.js"></script>

The root namespace is d3; all the commands that we issue from D3 will be using the

d3 object.

 Using D3
We use the select() function to target specific elements or the selectAll() function to

target all of a specific element type:

var body = d3.select("body");

The previous line selects the body tag and stores it in a variable named body. We can

then change attributes of the body if we want to or add new elements to the body:

var allParagraphs = d3.select("body").selectAll("p");

The previous line selects the body tag and then selects all the paragraph tags within

the body.

Notice that we chained the two actions together on the second line? We selected the

body and then selected all the paragraphs, both actions chained together. Also note that

we used the CSS selector to specify the element to target.

OK, once we have selected an element, that is now considered our selection and we

can perform actions on that selection. We can select elements within our selection as we

did in the previous example.

We can update attributes of the selection with the attr() function. The attr()

function accepts two parameters: the first is the name of the attribute, and the second is

the value to set the attribute to. Suppose we want to change the background color of the

current document. We can just select the body and set the bgcolor attribute by adding

this to our script block:

<script>

 d3.select("body")

 .attr("bgcolor", "#000000");

</script>

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

98

Notice in the previous code snippet that we have brought the chained attribute

function call to the next line. We have done this for readability.

The really fun thing with this is that because we’re talking about JavaScript, and

functions are first-class objects in JavaScript, we can pass in a function as the value of an

attribute so that whatever it evaluates to becomes the value that is set:

<script>

 d3.select("body")

 .attr("bgcolor", function(){

 return "#000000";

});

</script>

We can also add elements to our selection using the append() function. The

append() function accepts a tag name as the first parameter. It will create a new element

of the type specified and return that new element as the current selection:

<script>

var svg = d3.select("body")

 .append("svg");

</script>

The preceding code creates a new SVG tag in the body of the page and stores that

selection in the variable svg.

Next, let’s re-create the shapes in Figure 4-3 using what we’ve just learned about D3:

<script>

 var svg = d3.select("body")

 .append("svg")

 .attr("width", 800);

 var r = svg.append("rect")

 .attr("x", 80)

 .attr("y", 20)

 .attr("height", 100)

 .attr("width", 10)

 .attr("stroke", "#000000")

 .attr("fill", "#AAAAAA");

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

99

 var c = svg.append("circle")

 .attr("cx", 170)

 .attr("cy", 60)

 .attr("r", 40)

 .attr("stroke", "#000000")

 .attr("fill", "#AAAAAA");

 var e = svg.append("ellipse")

 .attr("cx", 330)

 .attr("cy", 70)

 .attr("rx", 100)

 .attr("ry", 50)

 .attr("stroke", "#000000")

 .attr("fill", "#AAAAAA");

</script>

For each shape, we append a new element to the SVG element and update the

attributes.

If we compare the two methods, we can see that we just create the SVG element in

D3, just as we do in straight markup. We then create an SVG rectangle, circle, and ellipse

inside the SVG element along with the same attributes that we specified in the SVG

markup. But our D3 example has one very important difference: we now have references

to each element on the page that we can interact with.

Let’s take a look at interactions in D3.

 Binding Data
For data visualizations, the most important interaction we have with our SVG shapes

is to bind data to them. This allows us to then reflect that data in the properties of the

shapes.

To bind data, we simply call the data() method of a selection:

<script>

var rect = svg

 .append("rect")

 .data([1,2,3]);

</script>

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

100

That’s fairly straightforward. We can then reference that bound data via anonymous

functions that we pass to our attr() function calls. Let’s take a look at an example.

First, let’s create an array that we will call dataSet. To start to envision how this

will correlate to creating a data visualization, you can think of dataSet as a list of

nonsequential values, maybe test scores for a class or total rainfall for a set of regions:

<script>

var dataSet = [84,62,40,109];

</script>

Next, we will create an SVG element on the page. To do that, we’ll select the body and

append an SVG element with a width of 800 pixels. We’ll keep a reference to this SVG

element in a variable called svg:

<script>

var svg = d3

 .select("body")

 .append("svg")

 .attr("width", 800);

</script>

Here is where being able to bind data changes things. We will chain together a series

of commands that will create placeholder rectangles in the SVG element based on how

many elements exist in our data array.

We will first use selectAll() to return a reference to all rectangles in the SVG

element. There are none yet, but there will be by the time the chain finishes executing.

Next in the chain, we bind our dataSet variable and call enter(). The enter() function

creates placeholder objects from the bound data. Finally, we call append() to create a

rectangle at each placeholder that enter() created.

<script>

bars = svg

 .selectAll("rect")

 .data(dataSet)

 .enter()

 .append("rect");

</script>

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

101

If we looked at our work so far in a browser, we would see a blank page, but if we

looked at the HTML in a web inspector such as Firebug, we would see the SVG element

along with the rectangles created, but with no styling or attributes specified yet, similar

to Figure 4-5.

Next, let’s style the rectangles that we just made. We have a reference to all the

rectangles in the variable bars, so let’s chain together a bunch of attr() calls to style the

rectangles. While we’re at it, let’s use our bound data to size the height of the bars.

<script>

bars

 .attr("width", 15)

 .attr("height", function(x){return x;})

 .attr("x", function(x){return x + 40;})

 .attr("fill", "#AAAAAA")

 .attr("stroke", "#000000");

</script>

The full source code looks like the following and makes the shapes that we see in

Figure 4-6:

<script>

var dataSet = [84,62,40,109];

var svg = d3

Figure 4-5. Firebug Inspection interface

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

102

 .select("body")

 .append("svg")

 .attr("width", 800);

bars = svg

 .selectAll("rect")

 .data(dataSet)

 .enter()

 .append("rect");

bars

 .attr("width", 15)

 .attr("height", function(x){return x;})

 .attr("x", function(x){return x + 40;})

 .attr("fill", "#AAAAAA")

 .attr("stroke", "#000000");

</script>

Now look in Firebug or your browser’s debugging tools again; you can see the

generated markup, as shown in Figure 4-7.

Figure 4-6. Styled rectangles for bar chart

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

103

Now you can really see the beginnings of how we can start to make data

visualizations with D3 by binding data to SVG shapes. Let’s take this concept another

step forward.

 Creating a Bar Chart
Our example so far looks a lot like the start of a bar chart in that we have a number of

bars whose heights represent data. Let’s give it some structure.

First, let’s give our SVG container a more concrete width and height. This is

important because the size of the SVG container is what determines the scale we use to

normalize the rest of the chart. And because we will reference this sizing throughout our

code, let’s make sure we abstract these values into their own variables.

We will define a height and width for our SVG container. We’ll also create variables

that will hold the minimum and maximum values that we will use on our axes: 0 and 109

(the largest data point), respectively. We’ll also define an offset value so we can draw the

SVG container slightly larger than our chart to give the chart margins around it.

<script>

var chartHeight = 460,

 chartWidth = 400,

 chartMin = 0,

 chartMax = 109,

 offset = 60

Figure 4-7. Rectangles shown as SVG source code in Firebug

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

104

var svg = d3

 .select("body")

 .append("svg")

 .attr("width", chartWidth)

 .attr("height", chartHeight + offset);

</script>

We next need to fix the orientation of our bars. As shown in Figure 4-6, the bars are

drawn from the top down, so that although their heights are accurate, they appear to be

facing down because SVG draws and positions shapes from the top left. So to get them

correctly oriented so the bars look like they are coming up from the bottom of the chart,

let’s add a y attribute to our bars.

The y attribute should be a function that references the data; this function should

subtract the bar height value from the chart height. The returned value from this

function is the value used in the y coordinate.

<script>

bars

 .attr("width", 15)

 .attr("height", function(x){return x;})

 .attr("y", function(x){return (chartHeight - x);})

 .attr("x", function(x){return x;})

 .attr("fill", "#AAAAAA")

 .attr("stroke", "#000000");

</script>

This flips the bars to the bottom of the SVG element. We can see the results in

Figure 4-8.

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

105

Now let’s scale the bars to fit the height of the SVG element. To do this, we’ll use a

D3 scale() function. The scale() function is used to take a number within a range and

transform it to the equivalent of that number in a different range of numbers, essentially

to scale values to equivalent values.

In this case, we have a number range that signifies the range of values in our dataSet

array, which signify the heights of the bars, and we want to transform these numbers to

equivalent values:

<script>

var yscale = d3.scaleLinear()

 .domain([chartMin,chartMax])

 .range([0,(chartHeight)]);

</script>

Be sure to place this code after the section that declares the chart variables,

preferably right before we declare the “svg” variable. We then just update the height and

y attributes of the bars to use the yscale() function:

<script>

bars

 .attr("width", 15)

 .attr("height", function(x){ return yscale(x);})

 .attr("y", function(x){return (chartHeight - yscale(x));})

 .attr("x", function(x){return x;})

Figure 4-8. Rectangles in bar chart no longer inverted

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

106

 .attr("fill", "#AAAAAA")

 .attr("stroke", "#000000");

</script>

This produces the graphic shown in Figure 4-9.

Very nice! But so far, we’ve just been placing the bars based on their height instead

of where they lie in the array. Let’s change that to make their array location more

meaningful, so the bars are displayed in the correct order.

Figure 4-9. Rectangles for bar chart properly scaled

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

107

To do that, we just update the x value of the bars. We’ve seen already that we can

pass in an anonymous function to the value parameter of the attr() function. The first

parameter in our anonymous function is the value of the current element of our array. If

we specify a second parameter in our anonymous function, it will hold the current index

number.

We can then reference that value and offset it to place each bar:

<script>

bars

 .attr("width", 15)

 .attr("height", function(x){ return yscale(x);})

 .attr("y", function(x){return (chartHeight - yscale(x));})

 .attr("x", function(x, i){return (i * 20);})

 .attr("fill", "#AAAAAA")

 .attr("stroke", "#000000");

</script>

This gives us the ordering of the bars shown in Figure 4-10. Just by eyeballing it, we

can tell that the bars are now closer representations of the data in the array—not just the

height but also the height in the order specified in the array.

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

108

Now let’s add text labels so that we can better see what values the heights of the bars

are signifying.

We do that by creating SVG text elements in much the same way as creating the

bars. We create text placeholders for every element in our data array and then style the

text elements. You’ll notice that the anonymous function that we pass into the x- and

y-attribute calls is almost the same for the text elements as it was for the bars, only offset

so that the text is above and to the center of each bar:

<script>

svg.selectAll("text")

 .data(dataSet)

 .enter()

 .append("text")

 .attr("x", function(d, i) { return ((i * 20) + offset/4); })

 .attr("y", function(x, i){return (chartHeight - yscale(x) - 24) ;})

 .attr("dx", -15/2)

 .attr("dy", "1.2em")

Figure 4-10. Rectangles in bar chart ordered to follow the ordering in our data

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

109

 .attr("text-anchor", "middle")

 .text(function(d) { return d;})

 .attr("fill", "black");

</script>

This code produces the chart shown in Figure 4-11.

See the following complete source code:

<html>

<head>

<title></title>

<script src="d3.js"></script>

</head>

<body>

<script>

var dataSet = [84,62,40,109];

Figure 4-11. Bar chart with text labels

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

110

var chartHeight = 460,

 chartWidth = 400,

 chartMin = 0,

 chartMax = 115,

 offset = 60;

var yscale = d3.scaleLinear()

 .domain([chartMin,chartMax])

 .range([0,(chartHeight)]);

var svg = d3

 .select("body")

 .append("svg")

 .attr("width", chartWidth)

 .attr("height", chartHeight + offset);

bars = svg

 .selectAll("rect")

 .data(dataSet)

 .enter()

 .append("rect");

bars

 .attr("width", 15)

 .attr("height", function(x){ return yscale(x);})

 .attr("y", function(x){return (chartHeight - yscale(x));})

 .attr("x", function(x, i){return (i * 20);})

 .attr("fill", "#AAAAAA")

 .attr("stroke", "#000000");

svg.selectAll("text")

 .data(dataSet)

 .enter()

 .append("text")

 .attr("x", function(d, i) { return ((i * 20) + offset/4); })

 .attr("y", function(x, i){return (chartHeight - yscale(x) - 24) ;})

 .attr("dx", -15/2)

 .attr("dy", "1.2em")

 .attr("text-anchor", "middle")

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

111

 .text(function(d) { return d;})

 .attr("fill", "black");

</script>

</body>

</html>

And finally, let’s read in our data from external files instead of hard-coding it in

the page.

 Loading External Data
First, we’ll take the array out of our file and put it in its own external file: sampleData.csv.

The contents of sampleData.csv are simply the following:

84,62,40,109

Next, we will use the d3.text() function to load in sampleData.csv. The way d3.

text() works is that it takes a path to an external file and then assigns it to a variable

(in this case named data). The function receives a parameter that is the contents of the

external file:

<script>

d3.text("sampleData.csv").then((data) => {});

</script>

The catch is that we need the contents of our external file before we can begin doing

any charting on the data. So within the callback function, we will parse up the file and

then wrap all our existing functionality, like so:

<html>

<head>

<title></title>

<script src="d3.js"></script>

</head>

<body>

<script>

d3.text("sampleData.csv").then((data) => {

var dataSet = data.split(",");

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

112

var chartHeight = 460,

 chartWidth = 400,

 chartMin = 0,

 chartMax = 115,

 offset = 60;

var yscale = d3.scaleLinear()

 .domain([chartMin,chartMax])

 .range([0,(chartHeight)]);

var svg = d3

 .select("body")

 .append("svg")

 .attr("width", chartWidth)

 .attr("height", chartHeight + offset);

bars = svg

 .selectAll("rect")

 .data(dataSet)

 .enter()

 .append("rect");

bars

 .attr("width", 15)

 .attr("height", function(x){ return yscale(x);})

 .attr("y", function(x){return (chartHeight - yscale(x));})

 .attr("x", function(x, i){return (i * 20);})

 .attr("fill", "#AAAAAA")

 .attr("stroke", "#000000");

svg.selectAll("text")

 .data(dataSet)

 .enter()

 .append("text")

 .attr("x", function(d, i) { return ((i * 20) + offset/4); })

 .attr("y", function(x, i){return (chartHeight - yscale(x) - 24) ;})

 .attr("dx", -15/2)

 .attr("dy", "1.2em")

 .attr("text-anchor", "middle")

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

113

 .text(function(d) { return d;})

 .attr("fill", "black");

 })

</script>

</body>

</html>

It’s important to note that if you are running this code locally on your computer, as

opposed to on a web server, you will get an error similar to “Cross origin requests are

only supported for HTTP.” This is a security measure that your browser is using in order

to prevent malicious code from running on your local machine. It’s advised to use a local

web server to work around this issue while programming.

Returning to our d3.text() function—CSV files aren’t the only format we can read

in. In fact, d3.text() is only syntactic sugar—a convenience method or a type-specific

wrapper for D3’s implementation of the XMLHttpRequest object d3.xhr().

For reference, the XMLHttpRequest object is what is used in AJAX transactions to

load content asynchronously from the client side without refreshing the page. In pure

JavaScript, we instantiate the XHR object, pass in a URL to a resource, and the method

to retrieve the resource (GET or POST). We also specify a callback function that will get

invoked when the XHR object is updated. In this function, we can parse up the data and

begin using it. See Figure 4-12 for a high-level diagram of this process.

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

114

In D3, the d3.xhr() function is D3’s wrapper for the XMLHttpRequest object. It

works much the same way that we just saw d3.text() work, where we pass in a URL to a

resource and a callback function to execute.

The other type-specific convenience functions that D3 has are d3.csv(), d3.json(),

d3.xml(), and d3.html().

 Summary
This chapter explored D3. We started out covering the introductory concepts of HTML,

CSS, SVG, and JavaScript, at least the points that are pertinent to implementing D3. From

there, we delved into D3, looking at introductory concepts like creating our first SVG

shapes to expanding on that idea by making those shapes into a bar graph.

Figure 4-12. Sequence diagram of XHR transaction

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

115

D3 is a fantastic library for crafting data visualizations. To see the full API

documentation, see https://github.com/mbostock/d3/wiki/API- Reference.

We will return to D3, but first, we will explore some data visualizations that we can

create that have practical application in the world of web development. The first one we

will look at is something that you may have seen in your Google analytics dashboard or

something similar: a data map based on user visits.

CHapTer 4 DaTa VIsUaLIzaTIon wITH D3

https://github.com/mbostock/d3/wiki/API-Reference

117
© Tom Barker, Jon Westfall 2022
T. Barker and J. Westfall, Pro Data Visualization Using R and JavaScript,
https://doi.org/10.1007/978-1-4842-7202-2_5

CHAPTER 5

Visualizing Spatial Data
from Access Logs
In the last chapter, we talked about D3 and looked at concepts from making simple

shapes to creating a bar chart out of those shapes. In the previous two chapters, we took

a deep dive into R. Now that you are familiar with the core technologies that we will be

using, let’s begin looking at examples of how, as web developers, we can create data

visualizations that communicate useful information around our domain.

The first one that we will look at is creating a data map out of our access logs.

 What Are Data Maps?
First, let’s level set and make sure that we clearly define a data map. A data map

is a representation of information over a spatial field, a marriage of statistics with

cartography. Data maps are some of the most easily understood and widely used data

visualizations there are because their data is couched in something that we are all

familiar with and use anyway: maps.

Recall the discussion in Chapter 1 of the Cholera map created by Jon Snow in

1854. This is considered one of the earliest examples of a data map, though there are

several notable contemporaries, including several by Charles Minard, an engineer in

nineteenth-century France. He is most widely remembered for his data visualization of

Napoleon’s invasion of Russia in 1812.

https://doi.org/10.1007/978-1-4842-7202-2_5#DOI

118

Figure 5-1. Early data map from Charles Minard demonstrating source region
and cattle consumption in France

Minard also created several prominent data maps. Two of his most famous data

maps include the data map demonstrating the source region and percentage of total

cattle consumed in France (see Figure 5-1) and the data map demonstrating the wine

export path and destination from France (see Figure 5-2).

Chapter 5 Visualizing spatial Data from aCCess logs

119

Today, we see data maps everywhere. They can be informative and artistic

expressions, like the wind map project from Fernanda Viegas and Martin Wattenberg

(see Figure 5-3). Available at http://hint.fm/wind, the wind project demonstrates the

path and force of wind currents over the United States.

Figure 5-2. Data map from Minard demonstrating wine export path and
destination

Chapter 5 Visualizing spatial Data from aCCess logs

http://hint.fm/wind

120

Data maps can be profound, such as those available at energy.gov that demonstrate

concepts such as energy consumption by state (see Figure 5-4) or even renewable energy

production by state.

Figure 5-3. Wind map, showing wind speeds by region for the touchdown
of Hurricane Sandy (used with permission of Fernanda Viegas and Martin
Wattenberg)

Chapter 5 Visualizing spatial Data from aCCess logs

121

You’ve now seen historical and contemporary examples of data maps. In this

chapter, you will look at creating your own data map from web server access logs.

 Access Logs
Access logs are records that a web server keeps to track what resources were requested.

Whenever a web page, an image, or any other kind of file is requested from a server, the

server makes a log entry for the request. Each request has certain data points associated

with it, usually information about the requestor of the resource (e.g., IP address and user

agent) and general information such as time of day and what resource was requested.

Let’s look at an access log. A sample entry looks like this:

msnbot-157-55-17-199.search.msn.com - - [18/Jan/2013:13:32:15 -0400] "GET

/robots.txt HTTP/1.1" 404 208 "-" "Mozilla/5.0 (compatible; bingbot/2.0;

+ http://www.bing.com/bingbot.htm)"

Figure 5-4. Data map depicting energy consumption by state, from energy.gov
(available at http://energy.gov/maps/2009- energy- consumption- person)

Chapter 5 Visualizing spatial Data from aCCess logs

http://energy.gov/maps/2009-energy-consumption-person

122

This is a snippet from a sample Apache access log. Apache access logs follow the

combined log format, which is an extension of the common log format standard of the

World Wide Web Consortium (W3C). Documentation for the common log format can be

found here:

www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format

The common log format defines the following fields, separated by tabs:

• IP address or DNS name of remote host

• Logname of the remote user

• Username of the remote user

• Datestamp

• The request—usually includes the request method and the path to

the resource requested

• HTTP status code returned for the request

• Total file size of the resource requested

The combined log format adds the referrer and user agent fields. The Apache

documentation for the combined log format can be found here:

http://httpd.apache.org/docs/current/logs.html#combined

Note that fields that are not available are represented by a single dash -.

Let’s dissect the previous log entry:

• The first field is msnbot-157-55-17-199.search.msn.com. This is a

DNS name that just happens to have the IP address built into it. We

can’t count on parsing the IP address out of this domain, so for now,

just ignore the IP address. When we get to programmatically parsing

the logs, we will use the native PHP function gethostbyname() to

look up the IP addresses for given domain names.

• The next two fields, the logname and the user, are empty.

• Next is the datestamp: [18/Jan/2013:13:32:15 -0400].

Chapter 5 Visualizing spatial Data from aCCess logs

123

• After the datestamp is the request: "GET /robots.txt HTTP/1.1".

If you hadn’t already guessed from the DNS name, this is a bot,

specifically Microsoft’s msnbot replacement: the bingbot. In this

record, the bingbot is requesting the robots.txt file.

• Next is the HTTP status of the request: 404. Clearly, there was no

robots.txt file available.

• Next is the total payload of the request. Apparently the 404 cost

208 bytes.

• Next is a dash to signify that the referrer was empty.

• The last is the useragent: "Mozilla/5.0 (compatible;

bingbot/2.0; + http://www.bing.com/bingbot.htm)", which tells

us definitively that it is indeed a bot.

Now that you have the access log and understand what is in it, you can parse it to use

each field in it programmatically.

 Parsing the Access Log
The process of parsing the access log is the following:

 1. Read in the access log.

 2. Parse it and gather geographic data based on the stored IP

address.

 3. Output the fields that we are interested in for our visualization.

 4. Read in this output and visualize.

We’ll use PHP for the first three steps and R for the last step. Note that you will need

to be running PHP 5.4.10 or higher to successfully run the following PHP code.

Chapter 5 Visualizing spatial Data from aCCess logs

http://www.bing.com/bingbot.htm

124

 Read in the Access Log
Create a new PHP document called parseLogs.php, within which you will first create a

function to read in a file. Call this function parseLog() and have it accept the path to the

file:

function parseLog($file){

}

Within this function, you will write some code that will open the passed-in file for

reading and iterate through each line of the file until it reaches the end of the file. Each

step in the iteration stores the line that is read in, in the variable $line:

$logArray = array();

$file_handle = fopen($file, "r");

while (!feof($file_handle)) {

 $line = fgets($file_handle);

}

fclose($file_handle);

Fairly standard file I/O functionality in PHP so far. Within the loop, you will stub

out a function call to a function that you will call parseLogLine() and another function

that you will call getLocationbyIP(). In parseLogLine(), you will split up the line and

store the values in an array. In getLocationbyIP(), you will use the IP address to get

geographic information. You will then store this returned array in a larger array that is

called $logArray.

$lineArr = parseLogLine($line);

$lineArr = getLocationbyIP($lineArr);

$logArray[count($logArray)] = $lineArr;

Don’t forget to create the $logArray variable at the top of the function.

The finished function should look like so:

function parseLog($file){

$logArray = array();

$file_handle = fopen($file, "r");

while (!feof($file_handle)) {

 $line = fgets($file_handle);

Chapter 5 Visualizing spatial Data from aCCess logs

125

 $lineArr = parseLogLine($line);

 $lineArr = getLocationbyIP($lineArr);

 $logArray[count($logArray)] = $lineArr;

}

fclose($file_handle);

return $logArray;

}

 Parse the Log File
Next, you’ll flesh out the parseLogLine() function. First, you’ll create the empty

function:

function parseLogLine($logLine){

}

The function will expect a single line of the access log.

Remember that each line of the access log is made up of sections of information

separated by whitespace. Your first instinct might be to just split the line at each

instance of a whitespace, but this would result in breaking up the user agent string (and

potentially other fields) in unexpected ways.

For our purposes, a much cleaner way to parse the line is to use a regular expression.

Regular expressions, called regex for short, are patterns that enable you to do quick and

efficient string matching.

Regular expressions use special characters to define these patterns: individual

characters, character literals, or sets of characters. A deep dive on regular expressions

is outside of the scope of this chapter, but a great reference to read about the different

regular expression patterns is the Microsoft regular expression Quick Reference,

available here: http://msdn.microsoft.com/en- us/library/az24scfc.aspx.

Grant Skinner also provides a great tool for creating and debugging regular

expressions (see Figure 5-5), which is available here: https://regexr.com.

Chapter 5 Visualizing spatial Data from aCCess logs

http://msdn.microsoft.com/en-us/library/az24scfc.aspx
https://regexr.com

126

To use Grant’s tool, change the mode at the top from JavaScript to PCRE (which

is how PHP interprets regular expressions). Then paste in the following into the large

“Text” box:

114.119.143.124 - - [14/Jun/2021:14:21:03 -0400] “GET /2007/12/your-daddy-

comment-leads-to-parking-lot-attack-northwest-florida-daily-news/ HTTP/1.1” 200

19591 “-” “Mozilla/5.0 (Linux; Android 7.0;) AppleWebKit/537.36 (KHTML, like Gecko)

Mobile Safari/537.36 (compatible; PetalBot;+https://webmaster.petalsearch.com/

site/petalbot)”

Finally, enter the following regular expression into the “Expression” box: ^([\d.:]+)

(\S+) (\S+) \[([\w\/]+):([\w:]+)\s([+\-]\d{4})\] “(.+?) (.+?) (.+?)” (\d{3}) (\d+|(?:.+?))

“([^”]*|(?:.+?))” “([^”]*|(?:.+?))”

Clicking the expression match will now let you explore how each portion of the

regular expression is found in the log entry that we pasted in.

Turning to our PHP code, let’s define our regular expression pattern and store it in a

variable that we will call $pattern.

Figure 5-5. Grant Skinner’s regex tool

Chapter 5 Visualizing spatial Data from aCCess logs

https://webmaster.petalsearch.com/site/petalbot
https://webmaster.petalsearch.com/site/petalbot

127

If you aren’t proficient with regex, you can create them fairly easily using Grant

Skinner’s tool (refer to Figure 5-5). Using this tool, you can come up with the following

pattern:

$pattern = '/^([\d.:]+) (\S+) (\S+) \[([\w\/]+):([\w:]+)\s([+\-

]\d{4})\] "(.+?) (.+?) (.+?)" (\d{3}) (\d+|(?:.+?)) "([^"]*|(?:.+?))"

"([^"]*|(?:.+?))"/';

Within the tool, you can see how it breaks up the strings into the following groups

(see Figure 5-6).

You now have a regular expression to use. Let’s use PHP’s preg_match() function.

This takes as parameters a regular expression, a string to match it against, and an array to

populate as the output of the pattern matching:

preg_match($pattern,$logLine,$logs);

From there, we can just create an associative array with named indexes to hold our

parsed up line:

$logArray = array();

$logArray['ip'] = gethostbyname($logs[1]);

$logArray['identity'] = $logs[2];

$logArray['user'] = $logs[2];

$logArray['date'] = $logs[4];

$logArray['time'] = $logs[5];

$logArray['timezone'] = $logs[6];

$logArray['method'] = $logs[7];

Figure 5-6. Log file line split into groups

Chapter 5 Visualizing spatial Data from aCCess logs

128

$logArray['path'] = $logs[8];

$logArray['protocol'] = $logs[9];

$logArray['status'] = $logs[10];

$logArray['bytes'] = $logs[11];

$logArray['referer'] = $logs[12];

$logArray['useragent'] = $logs[13];

Our complete parseLogLine() function should now look like this:

function parseLogLine($logLine){

 $pattern = '/^([\d.:]+) (\S+) (\S+) \[([\w\/]+):([\w:]+)\

s([+\-]\d{4})\] "(.+?) (.+?) (.+?)" (\d{3}) (\d+|(?:.+?))

"([^"]*|(?:.+?))" "([^"]*|(?:.+?))"/';

 preg_match($pattern,$logLine,$logs);

 $logArray = array();

 $logArray['ip'] = gethostbyname($logs[1]);

 $logArray['identity'] = $logs[2];

 $logArray['user'] = $logs[2];

 $logArray['date'] = $logs[4];

 $logArray['time'] = $logs[5];

 $logArray['timezone'] = $logs[6];

 $logArray['method'] = $logs[7];

 $logArray['path'] = $logs[8];

 $logArray['protocol'] = $logs[9];

 $logArray['status'] = $logs[10];

 $logArray['bytes'] = $logs[11];

 $logArray['referer'] = $logs[12];

 $logArray['useragent'] = $logs[13];

 return $logArray;

}

Next, you will create the functionality for the getLocationbyIP() function.

Chapter 5 Visualizing spatial Data from aCCess logs

129

 Geolocation by IP
In the getLocationbyIP() function, you can take the array that you made by parsing

a line of the access log and use the IP field to get the geographic location. There are

many ways to get geographic location by IP address; most involve either calling a third-

party API or downloading a third-party database with the IP location information

prepopulated. Some of these third parties are freely available; some have a cost

associated with them.

For our purposes, you can use the free API available at hostip.info. Figure 5-7 shows

the hostip.info home page.

Figure 5-7. hostip.info home page

Chapter 5 Visualizing spatial Data from aCCess logs

130

The hostip.info service aggregates geotargeting information from ISPs as well

as direct feedback from users. It exposes an API as well as a database available for

download.

The API is available at http://api.hostip.info/. If no parameters are provided,

the API returns the geolocation of the client. By default, the API returns XML. The return

value looks like this:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<HostipLookupResultSet version="1.0.1" xmlns:gml=" http://www.opengis.net/

gml " xmlns:xsi=" http://www.w3.org/2001/XMLSchema-instance " xsi:noName

spaceSchemaLocation=" http://www.hostip.info/api/hostip-1.0.1.xsd ">

 <gml:description>This is the Hostip Lookup Service</gml:description>

 <gml:name>hostip</gml:name>

 <gml:boundedBy>

 <gml:Null>inapplicable</gml:Null>

 </gml:boundedBy>

 <gml:featureMember>

 <Hostip>

 <ip>71.225.152.145</ip>

 <gml:name>Chalfont, PA</gml:name>

 <countryName>UNITED STATES</countryName>

 <countryAbbrev>US</countryAbbrev>

 <!-- Co-ordinates are available as lng,lat -->

 <ipLocation>

 <gml:pointProperty>

 <gml:Point srsName=" http://www.opengis.net/gml/srs/epsg.xml#4326 ">

 <gml:coordinates>-75.2097,40.2889</gml:coordinates>

 </gml:Point>

 </gml:pointProperty>

 </ipLocation>

 </Hostip>

 </gml:featureMember>

</HostipLookupResultSet>

Chapter 5 Visualizing spatial Data from aCCess logs

http://api.hostip.info/

131

You can refine the API calls. If you want only country information, you can call

http://api.hostip.info/country.php. It returns a string with a country code. If JSON

is preferred over XML, you can call http://api.hostip.info/get_json.php and get the

following result:

{"country_name":"UNITED STATES","country_code":"US","city":"Chalfont,

PA","ip":"71.225.152.145"}

To specify an IP address, add the parameter ?ip=xxxx, like so:

http://api.hostip.info/get_json.php?ip=100.43.83.146

OK, let’s code the function!

We’ll stub out the function and have it accept an array. We’ll pull the IP address from

the array, store it in a variable, and concatenate the variable to a string that contains the

path to the hostip.info API:

function getLocationbyIP($arr){

 $IPAddress = $arr['ip'];

 $IPCheckURL = " http://api.hostip.info/get_json.php?ip=$IPAddress ";

}

You’ll pass this string to the native PHP function file get_contents() and store

the return value, the results of the API call, in a variable that you’ll name jsonResponse.

You’ll use the PHP json_decode() function to convert the returned JSON data into a

native PHP object:

$jsonResponse = file_get_contents($IPCheckURL);

$geoInfo = json_decode($jsonResponse);

You next pull the geolocation data from the object and add it to the array that you

passed into the function. The city and state information is a single string separated by a

comma and a space (“Philadelphia, PA”), so you’ll need to split at the comma and save

each field separately in the array.

$arr['country'] = $geoInfo->{"country_code"};

$arr['city'] = explode(",",$geoInfo->{"city"})[0];

$arr['state'] = explode(",",$geoInfo->{"city"})[1];

Chapter 5 Visualizing spatial Data from aCCess logs

http://api.hostip.info/country.php
http://api.hostip.info/get_json.php

132

Next, let’s do a little bit of error checking that will make things easier later on in the

process. You’ll check to see whether the state string has any value; if it doesn’t, set it to

“XX”. This will be helpful once you begin parsing data in R. And finally, you’ll return the

updated array:

if(count($arr['state']) < 1)

 $arr['state'] = "XX";

return $arr;

The full function should look like this:

function getLocationbyIP($arr){

 $IPAddress = $arr['ip'];

 $IPCheckURL = " http://api.hostip.info/get_json.php?ip=$IPAddress ";

 $jsonResponse = file_get_contents($IPCheckURL);

 $geoInfo = json_decode($jsonResponse);

 $arr['country'] = $geoInfo->{"country_code"};

 $arr['city'] = explode(",",$geoInfo->{"city"})[0];

 $arr['state'] = explode(",",$geoInfo->{"city"})[1];

 if(count($arr['state']) < 1)

 $arr['state'] = "XX";

 return $arr;

}

Finally, let’s create a function to write processed data out to a file.

 Output the Fields
You’ll create a function named writeRLog() that accepts two parameters—the array

populated with decorated log data and the path to a file:

function writeRLog($arr, $file){

}

Chapter 5 Visualizing spatial Data from aCCess logs

133

You need to create a variable called writeFlag that will be the flag to tell PHP to

either write or append data to the file. You check to see whether the file exists; if it does,

you append content instead of overwrite. After the check, open the file:

writeFlag = "w";

if(file_exists($file)){

 $writeFlag = "a";

}

$fh = fopen($file, $writeFlag) or die("can't open file");

You then loop through the passed-in array; construct a string containing the IP

address, date, HTTP status, country code, state, and city of each log entry; and write that

string to the file. Once you’ve finished iterating through the array, you close the file.

for($x = 0; $x < count($arr); $x++){

 if($arr[$x]['country'] != "XX"){

 $data = $arr[$x]['ip'] . "," . $arr[$x]['date'] . "," . $arr[$x]

['status'] . "," . $arr[$x]['country'] . "," . $arr[$x]['state']

. "," . $arr[$x]['city'];

 }

 fwrite($fh, $data . "\n");

 }

Our completed writeRLog() function should look like this:

function writeRLog($arr, $file){

 $writeFlag = "w";

 if(file_exists($file)){

 $writeFlag = "a";

 }

 $fh = fopen($file, $writeFlag) or die("can't open file");

 for($x = 0; $x < count($arr); $x++){

 if($arr[$x]['country'] != "XX"){

 $data = $arr[$x]['ip'] . "," . $arr[$x]['date'] . "," .

$arr[$x]['status'] . "," . $arr[$x]['country'] . "," .

$arr[$x]['state'] . "," . $arr[$x]['city'];

 }

 fwrite($fh, $data . "\n");

Chapter 5 Visualizing spatial Data from aCCess logs

134

 }

 fclose($fh);

 echo "log created";

}

 Adding Control Logic
Finally, you’ll create some control logic to invoke all these functions that you just

created. You’ll declare the path to the access log and the path to our output flat file, call

parseLog(), and send the output to writeRLog().

$logfile = "access_log";

$chartingData = "accessLogData.txt";

$logArr = parseLog($logfile);

writeRLog($logArr, $chartingData);

Our completed PHP code should look like the following:

<html>

<head></head>

<body>

<?php

$logfile = "access_log";

$chartingData = "accessLogData.txt";

$logArr = parseLog($logfile);

writeRLog($logArr, $chartingData);

function parseLog($file){

 $logArray = array();

 $file_handle = fopen($file, "r");

 while (!feof($file_handle)) {

 $line = fgets($file_handle);

 $lineArr = parseLogLine($line);

 $lineArr = getLocationbyIP($lineArr);

 $logArray[count($logArray)] = $lineArr;

 }

Chapter 5 Visualizing spatial Data from aCCess logs

135

 fclose($file_handle);

 return $logArray;

}

function parseLogLine($logLine){

 $pattern = '/^([\d.:]+) (\S+) (\S+) \[([\w\/]+):([\w:]+)\

s([+\-]\d{4})\] "(.+?) (.+?) (.+?)" (\d{3}) (\d+|(?:.+?))

"([^"]*|(?:.+?))" "([^"]*|(?:.+?))"/';

 preg_match($pattern,$logLine,$logs);

 $logArray = array();

 $logArray['ip'] = gethostbyname($logs[1]);

 $logArray['identity'] = $logs[2];

 $logArray['user'] = $logs[2];

 $logArray['date'] = $logs[4];

 $logArray['time'] = $logs[5];

 $logArray['timezone'] = $logs[6];

 $logArray['method'] = $logs[7];

 $logArray['path'] = $logs[8];

 $logArray['protocol'] = $logs[9];

 $logArray['status'] = $logs[10];

 $logArray['bytes'] = $logs[11];

 $logArray['referer'] = $logs[12];

 $logArray['useragent'] = $logs[13];

 return $logArray;

}

function getLocationbyIP($arr){

 $IPAddress = $arr['ip'];

 $IPCheckURL = "http://api.hostip.info/get_json.php?ip=$IPAddress";

 $jsonResponse = file_get_contents($IPCheckURL);

 $geoInfo = json_decode($jsonResponse);

 $arr['country'] = $geoInfo->{"country_code"};

 $arr['city'] = explode(",",$geoInfo->{"city"})[0];

 $arr['state'] = explode(",",$geoInfo->{"city"})[1];

 return $arr;

}

Chapter 5 Visualizing spatial Data from aCCess logs

136

function writeRLog($arr, $file){

 $writeFlag = "w";

 if(file_exists($file)){

 $writeFlag = "a";

 }

 $fh = fopen($file, $writeFlag) or die("can't open file");

 for($x = 0; $x < count($arr); $x++){

 if($arr[$x]['country'] != "XX"){

 $data = $arr[$x]['ip'] . "," . $arr[$x]['date']

. "," . $arr[$x]['status'] . "," . $arr[$x]

['country'] . "," . $arr[$x]['state'] . "," .

$arr[$x]['city'];

 }

 fwrite($fh, $data . "\n");

 }

 fclose($fh);

 echo "log created";

}

?>

</body>

</html>

And it should produce a flat file that looks similar to this:

71.225.152.145,18/Jan/2013,404,US, PA,Chalfont

114.119.143.124,14/Jun/2021,200,AU,,Canberra

We have made a sample access log available here: https://jonwestfall.com/data/

access_log.

 Creating a Data Map in R
So far, you parsed the access log, scrubbed the data, decorated it with location

information, and created a flat file that has a subset of information. The next step is to

visualize this data.

Chapter 5 Visualizing spatial Data from aCCess logs

https://jonwestfall.com/data/access_log
https://jonwestfall.com/data/access_log

137

Because you are making a map, you need to install the map package. Open up R;

from the console, type the following:

> install.packages('maps')

> install.packages('mapproj')

Now we can begin! To reference the map package in the R script, you need to load it

into memory by calling the library() function:

library(maps)

library(mapproj)

You next create several variables—one to point to our formatted access log data;

another is a list of column names. You create a third variable, logData, to hold the data

frame created when you read in the flat file.

logDataFile <- '/Applications/MAMP/htdocs/accessLogData.txt'

logColumns <- c("IP", "date", "HTTPstatus", "country", "state", "city")

logData <- read.table(logDataFile, sep=",", col.names=logColumns)

If you type logData in the console, you see the data frame formatted like this:

> logData

 IP date HTTPstatus country state city

1 100.43.83.146 25/Jan/2013 404 US NV Las Vegas

2 100.43.83.146 25/Jan/2013 301 US NV Las Vegas

3 64.29.151.221 25/Jan/2013 200 US XX (Unknown city)

4 180.76.6.26 25/Jan/2013 200 CN XX Beijing

Clearly, you could start to track several different data points here. Let’s first look at

mapping out what countries the traffic is coming from.

 Mapping Geographic Data

You can begin by pulling the unique country names from logData. You’ll store this in a

variable named country:

> country <- unique(logData$country)

Chapter 5 Visualizing spatial Data from aCCess logs

138

If you type country in the console, the data looks like the following:

> country

[1] US CN CA SE UA

Levels: CA CN SE UA US

These are the country codes that you get back from iphost.info. R has a different

set of country codes that it uses, so you’ll need to convert the iphost country codes to R

country codes. You can do this by applying a function to the country list.

You’ll use sapply() to apply an anonymous function of your own design to the list

of country codes. In the anonymous function, you’ll trim any whitespace and do a direct

replacement of country codes. You will use the gsub() function to do a replacement of

all instances of the passed-in parameter.

country <- sapply(country, function(countryCode){

 #trim whitespaces from the country code

 countryCode <- gsub("(^ +)|(+$)", "", countryCode)

 if(countryCode == "US"){

 countryCode<- "USA"

 }else if(countryCode == "AU"){

 countryCode<- "Australia"

 }}

)

You’ll notice that you are hard-coding every country code that you have. This is, of

course, bad form, and you’ll approach this problem a very different way once you dig

into state data.

If you type country into the console again, you’ll now see the following:

> country

 US AU

 "USA" "Australia"

You next use the match.map() function to match the countries with the map

package’s list of countries. The match.map() function creates a numeric vector in which

each element corresponds to a country on the world map. The elements of intersection

Chapter 5 Visualizing spatial Data from aCCess logs

139

(where countries in the country list match countries in the world map) have values

assigned to them—specifically, the index number from the original country list. So the

element that corresponds to USA has a 1, the element that corresponds to Canada has a

2, and so on. Where there is no intersection, the element has the value NA.

countryMatch <- match.map("world2", country)

Let’s next use the countryMatch list to create a color-coded country match. To

do this, simply apply a function that checks each element. If it is not NA, assign the

color #C6DBEF to the element, which is a nice light blue. If the element is NA, set the

element to white or #FFFFFF. You will save the result of this in a new list that you will call

colorCountry.

colorCountry <- sapply(countryMatch, function(c){

 if(!is.na(c)) c <- "#C6DBEF"

 else c <- "#FFFFFF"

})

Now let’s create our first visualization with the map() function! The map() function

accepts several parameters:

• The first is the name of the database to use. The database name can

be either world, usa state, or county; each contains data points that

correlate to geographic areas that the map() function will draw.

• If you only want to draw a subset of the larger geographic database,

you can specify an optional parameter named region that lists the

areas to draw.

• You can also specify the map projection to use. A map projection is

basically a way to represent a three-dimensional curved space on a

flat surface. There are a number of predefined projections, and the

mapproj package in R supports a number of these. For the world

map that you’ll be making, you will use an equal area projection, the

identifier of which is “azequalarea”. For more about map projections,

see http://xkcd.com/977/.

Chapter 5 Visualizing spatial Data from aCCess logs

http://xkcd.com/977/

140

• You also can specify the center point of our map, in latitude and

longitude, using the orientation parameter.

• Finally, you’ll pass the colorCountry list that you just made to the col

parameter.

map('world', proj='azequalarea', orient=c(41,-74,0), boundary=TRUE,

col=colorCountry, fill=TRUE)

This code produces the map that you can see in Figure 5-8.

From this map, we can see that the countries from our unique list are shaded blue

and the rest of the countries are colored white. This is good, but we can make it better.

Figure 5-8. Data map using a world map

Chapter 5 Visualizing spatial Data from aCCess logs

141

 Adding Latitude and Longitude

Let’s start by adding latitude and longitude lines, which will accentuate the curvature of

the globe and give context to where the poles are. To create latitude and longitude lines,

we first create a new map object, but we will set plot to FALSE so that the map is not

drawn to the screen. We’ll save this map object to a variable named m:

m <- map('world',plot=FALSE)

We’ll next call map.grid() and pass in our stored map object:

map.grid(m, col="blue", label=FALSE, lty=2, pretty=TRUE)

Note that if you are running this code line by line in the command window, it’s

important to keep the Quartz graphic window open as you type the lines in so that R

can update that chart. If you close the Quartz window while typing it in line by line, you

could get an error stating that plot.new has not been called. Or you could type each line

into a text file and copy them into the R command line all at once.

While we’re at it, let’s add a scale to the chart to show

map.scale()

Our completed R code should now look like so:

library(maps)

library(mapproj)

logDataFile <- '/Applications/MAMP/htdocs/accessLogData.txt'

logColumns <- c("IP", "date", "HTTPstatus", "country", "state", "city")

logData <- read.table(logDataFile, sep=",", col.names=logColumns)

country <- unique(logData$country)

country <- sapply(country, function(countryCode){

 #trim whitespaces from the country code

 countryCode <- gsub("(^ +)|(+$)", "", countryCode)

 if(countryCode == "US"){

 countryCode<- "USA"

 }else if(countryCode == "CN"){

 countryCode<- "China"

 }else if(countryCode == "CA"){

 countryCode<- "Canada"

Chapter 5 Visualizing spatial Data from aCCess logs

142

 }else if(countryCode == "SE"){

 countryCode<- "Sweden"

 }else if(countryCode == "UA"){

 countryCode<- "USSR"

 }

})

countryMatch <- match.map("world", country)

#color code any states with visit data as light blue
colorCountry <- sapply(countryMatch, function(c){
 if(!is.na(c)) c <- "#C6DBEF"
 else c <- "#FFFFFF"
})
m <- map('world',plot=FALSE)
map('world',proj='azequalarea',orient=c(41,-74,0), boundary=TRUE,
col=colorCountry,fill=TRUE)
map.grid(m,col="blue", label=FALSE, lty=2, pretty=TRUE)
map.scale()

And this code outputs the world map shown in Figure 5-9.

Chapter 5 Visualizing spatial Data from aCCess logs

143

Very nice! Next, let’s drill into a breakdown of visits by states in the United States.

 Displaying Regional Data

Let’s start by isolating US data; we can do this by selecting all rows in which the state

does not equal “XX”. Remember setting the value in the state column to “XX” when we

were parsing the access log in PHP? This is why. Countries other than the United States

don’t have state data associated with them, so we can simply pull only the rows that have

state data.

usData <- logData[logData$state != "XX",]

Figure 5-9. Globe data map with latitude and longitude lines as well as scale

Chapter 5 Visualizing spatial Data from aCCess logs

144

We next need to replace the state abbreviations that we got from hostip.info with the

full state names so that we can create a match.map lookup list, much like we did with the

preceding country data.

The upside with state data is that R has a data set that contains all 50 US state

names, abbreviations, and even more esoteric information such as area of the state and

named divisions (New England, Middle Atlantic, and so on). For more information, type

?state.name at the R console.

We can use the information in this data set to match the state abbreviations with the

full state names that the map package needs. To do this, we use the apply() function to

run an anonymous function that greps through the state.abb data set to find a match

for the passed-in state abbreviation and then use that returned value as the index for

retrieving the full state name from the state.name data set:

usData$state <- apply(as.matrix(usData$state), 1, function(s){

 #trim the abbreviation of whitespaces

 s <- gsub("(^ +)|(+$)", "", s)

 s <- state.name[grep(s, state.abb)]

})

We achieve the same functionality as the previous country match, but much more

elegantly. If we were so inclined, we could go back and create our own data set of

country names for future use to have a similar elegant solution for the country match.

Now that we have full state names to use, we can pull a unique list of state names and

use that list to create a map matched list (again, just as we did for countries):

states <- unique(usData$state)

stateMatch <- match.map("state", states)

With our state match list, we can again apply a function to it that will look for

matches in our match list, elements that do not have the value NA, and set the value for

those elements to our nice light blue color while all elements that do have the value of

NA get set to white. We save this list in a variable that we name colorMatch.

#color code any states with visit data as light blue

colorMatch <- sapply(stateMatch, function(s){

 if(!is.na(s)) s <- "#C6DBEF"

 else s <- "#FFFFFF"

})

Chapter 5 Visualizing spatial Data from aCCess logs

145

We can then use colorMatch in our call to the map() function:

map("state", resolution = 0,lty = 0,projection = "azequalarea",

col=colorMatch,fill=TRUE)

Hmm, but notice something? Only the colored areas are drawn to the stage, as

shown in Figure 5-10.

We need to make a second map() call that will draw the remainder of the map. In this

map() call, we will set the add parameter to TRUE, which will cause the new map that we

are drawing to be added to the current map. While we’re at it, let’s create a scale for this

map as well:

map("state", col = "black", fill=FALSE, add=TRUE, lty=1, lwd=1,

projection="azequalarea")

map.scale()

This code produces the finished state map in Figure 5-11.

Figure 5-10. Data map with only states that have data displayed

Chapter 5 Visualizing spatial Data from aCCess logs

146

 Distributing the Visualization
OK, now let’s put our R code in an R Markdown file for distribution. Let’s go into RStudio

and click File ➤ New ➤ R Markdown. Let’s add a header and make sure that our R code

is wrapped in ```{r} tags and that our charts have heights and widths assigned to them.

Our completed R Markdown file should look like this:

Visualizing Spatial Data from Access Logs

==

```{r}

library(maps)

library(mapproj)

logDataFile <- '/Applications/MAMP/htdocs/accessLogData.txt'

logColumns <- c("IP", "date", "HTTPstatus", "country", "state", "city")

logData <- read.table(logDataFile, sep=",", col.names=logColumns)

```

```{r fig.width=15, fig.height=10}

#chart worldwide visit data

#unfortunately there is no state.name equivalent for countries so we must check

Figure 5-11. Completed state data map

Chapter 5  Visualizing spatial Data from aCCess logs



147

#the explicit country names. In the us states below we are able to 

accomplish this much

#more efficiently

country <- unique(logData$country)

country <- sapply(country, function(countryCode){

  #trim whitespaces from the country code

  countryCode <- gsub("(^ +)|( +$)", "", countryCode)

  if(countryCode == "US"){

    countryCode<- "USA"

  }else if(countryCode == "CN"){

    countryCode<- "China"

  }else if(countryCode == "CA"){

    countryCode<- "Canada"

  }else if(countryCode == "SE"){

    countryCode<- "Sweden"

  }else if(countryCode == "UA"){

    countryCode<- "USSR"

  }

})

countryMatch <-  match.map("world", country)

#color code any states with visit data as light blue

colorCountry <- sapply(countryMatch, function(c){

 if(!is.na(c)) c <- "#C6DBEF"

 else c <- "#FFFFFF"

})

m <- map('world',plot=FALSE)

map('world',proj='azequalarea',orient=c(41,-74,0), boundary=TRUE, 

col=colorCountry,fill=TRUE)

map.grid(m,col="blue", label=FALSE, lty=2, pretty=FALSE)

map.scale()

```

```{r fig.width=10, fig.height=7}

#isolate the US data, scrub any unknown states

usData <- logData[logData$state != "XX", ]

usData$state <- apply(as.matrix(usData$state), 1, function(s){

  #trim the abbreviation of whitespaces

  s <- gsub("(^ +)|( +$)", "", s)

Chapter 5  Visualizing spatial Data from aCCess logs



148

  s <- state.name[grep(s, state.abb)]

})

s <- map('state',plot=FALSE)

states <- unique(usData$state)

stateMatch <- match.map("state", states)

#color code any states with visit data as light blue

colorMatch <- sapply(stateMatch, function(s){

 if(!is.na(s)) s <- "#C6DBEF"

 else s <- "#FFFFFF"

})

map("state", resolution = 0,lty = 0,projection = "azequalarea", 

col=colorMatch,fill=TRUE)

map("state", col = "black",fill=FALSE,add=TRUE,lty=1,lwd=1,projection="azeq

ualarea")

map.scale()

```

This code produces the output shown in Figure 5-12. I have also made this R script

available in the code download for this book.

Chapter 5 Visualizing spatial Data from aCCess logs

149

Figure 5-12. Data maps in R Markdown

Chapter 5 Visualizing spatial Data from aCCess logs

150

Figure 5-12. (continued)

Chapter 5 Visualizing spatial Data from aCCess logs

151

 Summary
This chapter discussed parsing access logs to produce data map visualizations. You

looked at both global country data in your maps and more localized state data. This is

the first taste of how you can begin to bring usage data to life.

The next chapter looks at bug backlog data in the context of time series charts.

Chapter 5 Visualizing spatial Data from aCCess logs

153
© Tom Barker, Jon Westfall 2022
T. Barker and J. Westfall, Pro Data Visualization Using R and JavaScript,
https://doi.org/10.1007/978-1-4842-7202-2_6

CHAPTER 6

Visualizing Data over Time
The last chapter discussed using access logs to create data maps representing the

geographic location of users. We used the map and mapproj (for map projections)

packages to create these visualizations.

This chapter explores creating time series charts, which are graphs that compare

changes in values over time. They are generally read left to right with the x-axis

representing some measure of time and the y-axis representing the range of values.

This chapter discusses visualizing defects over time.

Tracking defects over time allows us to identify not only spikes in issues but also

larger patterns in workflows, especially when we include more granular details such

as bug criticality and include cross-referencing data such as dates for events like start

and end of iteration. We begin to expose trends such as when during an iteration bugs

get opened, when most of the blocker bugs get opened, or what iterations produce the

highest number of bugs. This kind of self-evaluation and reflection are what allow us

to identify and focus attention on blind spots or areas of improvement. It also allows

us to recognize victories in a larger scope that might be missed when viewing the daily

numbers without context.

A case in point: recently our organization set a larger group goal of achieving a

certain bug number by the end of the year, a percent of the total open bugs that we

had open at the beginning of the year. With our peers and our management staff, we

coached all the developers, created process improvements, and won hearts and minds

for this goal. At the end of the year, the number of bugs we had remaining open was

about the same as when we had started. We were confused and concerned. But when

we summed the daily numbers, we realized that we had achieved something larger than

we anticipated: we actually opened one-third fewer bugs overall year over year from the

previous year. This was huge and would easily have been missed if we weren’t looking at

the data with a critical eye to the larger picture.

https://doi.org/10.1007/978-1-4842-7202-2_6#DOI

154

 Gathering Data
The first step of creating a defect time series chart is to decide on a time period that we

want to look at and gather the data. This means getting an export of all the bugs for a

given time period.

This step is completely dependent on the bug tracing software that you may

use. Maybe you use HP’s Quality Center because it makes sense with the rest of your

organization’s testing needs (such as being able to work with LoadRunner). Maybe you

use a hosted web-based solution such as Rally because you get defect management

bundled in with your user story and release tracking. Maybe you have your own

installation of Bugzilla because it’s open and free.

Whatever the case, all defect management software has a way to export your current

bug list. Depending on the defect-tracking software used, you can export to a flat file,

such as a comma or tab-separated file. The software can also allow access to its contents

via an API so you can create a script that accesses the API and exposes the content.

Either way, there are two important main cases when looking at bugs over time:

• Running total of bugs by date

• New bugs by date

For either of these cases, the minimum fields that we care about when we export

from the bug-tracking software are the following:

• Date opened

• Defect id

• Defect status

• Severity of defect

• Description of the defect

The exported bug data should look something like this:

Date, ID, Severity, Status, Summary

6/7/20,DE45091,Minor,Open,videos not playing

8/21/20,DE45092,Blocker,Open,alignment off

3/7/20,DE45093,Moderate,Closed,monsters attacking

Let’s process the data to be able to visualize it.

Chapter 6 Visualizing Data oVer time

155

 Data Analysis with R
The first thing is to read in and order the data. Assuming that data is exported to a flat file

named allbugs.csv, we can read in the data as follows (we have provided sample data

for it at http://jonwestfall.com/data/allbugs.csv):

bugExport <- "/Applications/MAMP/htdocs/allbugs.csv"

bugs <- read.table(bugExport, header=TRUE, sep=",")

Let’s order the data frame by date. To do this, we have to convert the Date column,

which is read in as a string, into a Date object using the as.Date() function. The as.

Date() function accepts several symbols to signify how to read and structure the date

object, as shown in Table 6-1.

So for the date "04/01/2013", we pass in "%m/%d/%Y"; for "April 01, 13", we pass

in "%B %d, %Y". You can see how the pattern matches up:

as.Date(bugs$Date,"%m/%d/%y")

Table 6-1. as.Date() function symbols

Symbol Meaning

%m numeric month

%b month name as string, abbreviated

%B Full month name as string

%d numeric day

%a Weekday as abbreviated string

%A Full weekday as string

%y Year as two-digit number

%Y Year as four-digit number

Chapter 6 Visualizing Data oVer time

http://jonwestfall.com/data/allbugs.csv

156

We’ll use the converted date in the order() function, which returns a list of index

numbers from the bugs data frame, corresponding with the correct way to order the

values in the data frame:

> order(as.Date(bugs$Date,"%m/%d/%y"))

 [1] 127 90 187 112 13 119 137 101 37 53 52 67 125 4 81 93 136

3 55 62 33 25 130 75 85 28

 [27] 44 159 126 107 30 191 80 124 36 104 18 24 82 20 21 34 56

147 29 156 16 59 51 139 1 123

 [53] 113 146 148 5 103 43 83 23 173 11 168 99 35 7 192 42 142

121 9 69 2 171 60 94 164 17

 [79] 91 84 178 96 105 8 110 39 177 109 97 120 135 58 79 15

111 49 117 50 57 92 129 114 145 158

[105] 116 151 143 162 31 73 77 182 26 74 195 10 48 88 76 183 115

184 189 108 61 174 144 186 12 134

[131] 157 41 86 27 175 6 165 46 118 188 65 141 22 169 190 72 66

154 40 47 64 166 14 87 95 155

[157] 193 133 179 54 140 128 89 102 161 63 45 78 138 180 149 185

106 38 181 172 176 153 160 150 170 122

[183] 194 100 167 68 98 132 70 152 19 163 71 32 131

Finally, we’ll use the results of the order() function as the indexes of the bugs data

frame and pass the results back into the bugs data frame:

bugs <- bugs[order(as.Date(bugs$Date," %m/%d/%y ")),]

This code reorders the bugs data frame based on the order of the indexes returned in

the order() function. It will be handy when we begin to slice up the data. The data frame

should now be a chronologically ordered list of bugs, which looks like the following:

> bugs

 Date ID Severity Status Summary

127 1/3/20 DE45217 Minor Open Mug of coffee empty

90 1/4/20 DE45180 Minor Closed mug of coffee destroyed

187 1/5/20 DE45277 Minor Open Zerg attack

112 1/9/20 DE45202 Blocker Closed Monkeys

13 1/12/20 DE45103 Minor Open Mug of coffee empty

119 1/13/20 DE45209 Blocker Closed The plague occurred

Chapter 6 Visualizing Data oVer time

157

Let's write this newly ordered list back out to a new file that we will

reference later called allbugsOrdered.csv:

write.table(bugs, col.names=TRUE, row.names=FALSE, file="allbugsOrdered.

csv", quote = FALSE, sep = ",")

This will come in handy later when we look at this data in D3.

 Calculating the Bug Count
Next, we will calculate the total bug count by date. This will show how many new bugs

are opened by day.

To do this, we pass bugs$Date into the table() function, which builds a data

structure of counts of each date in the bugs data frame:

totalBugsByDate <- table(bugs$Date)

So the structure of totalBugsByDate looks like the following:

> totalBugsByDate

 1/11/21 1/12/20 1/12/21 1/13/20 1/17/21 1/18/21 1/2/21 1/21/20 1/22/20

 1 1 3 1 2 1 1 1 1

 1/24/20 1/24/21 1/25/20 1/27/21 1/29/21 1/3/20 1/4/20 1/5/20 1/5/21

 1 1 1 1 1 1 1 1 1

 1/9/20 10/1/20 10/10/20 10/15/20 10/16/20 10/18/20 10/21/20 10/25/20 10/26/20

 1 1 1 1 1 2 2 1 1

10/29/20 10/30/20 10/6/20 11/17/20 11/18/20 11/19/20 11/21/20 11/23/20 11/26/20

 2 1 1 1 1 1 1 1 2

 11/4/20 11/8/20 12/14/20 12/15/20 12/17/20 12/21/20 12/22/20 12/23/20 12/24/20

 2 1 2 1 1 1 2 1 1

12/27/20 12/29/20 12/3/20 12/31/20 2/12/21 2/13/21 2/14/20 2/15/20 2/15/21

 1 1 1 1 1 1 1 1 1

 2/16/20 2/22/21 2/24/20 2/25/21 2/26/21 2/28/21 2/3/21 2/4/21 2/8/21

 1 2 1 1 2 1 1 1 1

 3/1/20 3/1/21 3/11/21 3/14/21 3/17/21 3/2/20 3/2/21 3/22/20 3/23/21

 2 1 3 1 1 1 1 2 1

 3/24/20 3/25/21 3/26/20 3/28/20 3/3/21 3/31/20 3/31/21 3/6/21 3/7/20

Chapter 6 Visualizing Data oVer time

158

 1 1 1 1 1 1 1 1 1

 3/7/21 4/12/21 4/13/20 4/15/21 4/18/21 4/19/21 4/20/20 4/25/20 4/26/21

 1 1 1 1 2 1 1 1 1

 4/27/20 4/29/21 4/4/20 4/5/21 4/7/20 4/8/20 5/1/20 5/10/20 5/11/21

 1 1 1 3 1 2 2 1 1

 5/12/20 5/14/21 5/16/21 5/17/20 5/17/21 5/2/21 5/20/20 5/20/21 5/22/20

 2 1 1 1 1 1 1 2 2

 5/24/21 5/25/20 5/26/21 5/27/20 5/27/21 5/28/20 5/28/21 5/29/21 5/30/20

 1 1 1 1 1 1 1 2 1

 5/31/20 5/6/20 5/8/20 6/11/20 6/11/21 6/14/20 6/16/21 6/2/21 6/20/20

 1 1 1 1 1 1 2 1 1

 6/28/20 6/3/20 6/3/21 6/4/20 6/4/21 6/6/21 6/7/20 6/7/21 6/8/21

 1 1 1 1 1 1 2 1 1

 6/9/21 7/14/20 7/18/20 7/2/20 7/22/20 7/23/20 7/25/20 7/28/20 7/29/20

 1 1 2 1 1 1 1 1 1

 7/9/20 8/10/20 8/17/20 8/2/20 8/21/20 8/22/20 8/23/20 8/24/20 8/26/20

 1 1 2 1 1 1 1 2 1

 8/27/20 8/28/20 8/29/20 8/3/20 8/6/20 9/10/20 9/11/20 9/14/20 9/16/20

 1 1 1 1 1 1 1 1 1

 9/2/20 9/21/20 9/8/20

 1 1 1

Let’s plot this data out to get an idea of how many bugs are opened each day:

plot(totalBugsByDate, type="l", main="New Bugs by Date", col="red",

ylab="Bugs")

This code creates the chart shown in Figure 6-1.

Chapter 6 Visualizing Data oVer time

159

Figure 6-1. Time series of new bugs by date

Now that we have a count of how many bugs are generated each day, we can get a

cumulative sum by using the cumsum() function. It takes the new bugs opened each day

and creates a running sum of them, updating the total each day. It allows us to generate a

trend line for the cumulative count of bugs over time.

> runningTotalBugs <- cumsum(totalBugsByDate)

>

> runningTotalBugs

 1/11/21 1/12/20 1/12/21 1/13/20 1/17/21 1/18/21 1/2/21 1/21/20 1/22/20

 1 2 5 6 8 9 10 11 12

 1/24/20 1/24/21 1/25/20 1/27/21 1/29/21 1/3/20 1/4/20 1/5/20 1/5/21

 13 14 15 16 17 18 19 20 21

 1/9/20 10/1/20 10/10/20 10/15/20 10/16/20 10/18/20 10/21/20 10/25/20 10/26/20

 22 23 24 25 26 28 30 31 32

10/29/20 10/30/20 10/6/20 11/17/20 11/18/20 11/19/20 11/21/20 11/23/20 11/26/20

Chapter 6 Visualizing Data oVer time

160

 34 35 36 37 38 39 40 41 43

 11/4/20 11/8/20 12/14/20 12/15/20 12/17/20 12/21/20 12/22/20 12/23/20 12/24/20

 45 46 48 49 50 51 53 54 55

12/27/20 12/29/20 12/3/20 12/31/20 2/12/21 2/13/21 2/14/20 2/15/20 2/15/21

 56 57 58 59 60 61 62 63 64

 2/16/20 2/22/21 2/24/20 2/25/21 2/26/21 2/28/21 2/3/21 2/4/21 2/8/21

 65 67 68 69 71 72 73 74 75

 3/1/20 3/1/21 3/11/21 3/14/21 3/17/21 3/2/20 3/2/21 3/22/20 3/23/21

 77 78 81 82 83 84 85 87 88

 3/24/20 3/25/21 3/26/20 3/28/20 3/3/21 3/31/20 3/31/21 3/6/21 3/7/20

 89 90 91 92 93 94 95 96 97

 3/7/21 4/12/21 4/13/20 4/15/21 4/18/21 4/19/21 4/20/20 4/25/20 4/26/21

 98 99 100 101 103 104 105 106 107

 4/27/20 4/29/21 4/4/20 4/5/21 4/7/20 4/8/20 5/1/20 5/10/20 5/11/21

 108 109 110 113 114 116 118 119 120

 5/12/20 5/14/21 5/16/21 5/17/20 5/17/21 5/2/21 5/20/20 5/20/21 5/22/20

 122 123 124 125 126 127 128 130 132

 5/24/21 5/25/20 5/26/21 5/27/20 5/27/21 5/28/20 5/28/21 5/29/21 5/30/20

 133 134 135 136 137 138 139 141 142

 5/31/20 5/6/20 5/8/20 6/11/20 6/11/21 6/14/20 6/16/21 6/2/21 6/20/20

 143 144 145 146 147 148 150 151 152

 6/28/20 6/3/20 6/3/21 6/4/20 6/4/21 6/6/21 6/7/20 6/7/21 6/8/21

 153 154 155 156 157 158 160 161 162

 6/9/21 7/14/20 7/18/20 7/2/20 7/22/20 7/23/20 7/25/20 7/28/20 7/29/20

 163 164 166 167 168 169 170 171 172

 7/9/20 8/10/20 8/17/20 8/2/20 8/21/20 8/22/20 8/23/20 8/24/20 8/26/20

 173 174 176 177 178 179 180 182 183

 8/27/20 8/28/20 8/29/20 8/3/20 8/6/20 9/10/20 9/11/20 9/14/20 9/16/20

 184 185 186 187 188 189 190 191 192

 9/2/20 9/21/20 9/8/20

 193 194 195

Chapter 6 Visualizing Data oVer time

161

This is exactly what we need to now plot out the way the bug backlog grows or

shrinks each day. To do that, let’s pass runningTotalBugs to the plot() function. We

set the type to "l" to signify that we are creating a line chart and then name the chart

Cumulative Defects Over Time. In the plot() function, we also turn the axes off so that

we can draw custom axes for this chart. We will want to draw custom axes so that we can

specify the dates as the x-axis labels.

To draw custom axes, we use the axis() function. The first parameter in the axis()

function is a number that tells R where to draw the axis.

• 1 corresponds to the x-axis at the bottom of the chart.

• 2 to the left of the chart.

• 3 to the top of the chart.

• 4 to the right of the chart.

plot(runningTotalBugs, type="l", xlab="", ylab="", pch=15, lty=1,

col="red", main="Cumulative Defects Over Time", axes=FALSE)

axis(1, at=1: length(runningTotalBugs), lab= row.names(totalBugsByDate))

axis(2, las=1, at=10*0:max(runningTotalBugs))

Note that the plot type is set to a lowercase L, not an uppercase i or 1. This code

creates the time series chart shown in Figure 6-2.

Chapter 6 Visualizing Data oVer time

162

This shows the progressively increasing bug backlog, by date.

The complete R code so far is as follows:

bugExport <- "allbugs.csv"

bugs <- read.table(bugExport, header=TRUE, sep=",")

as.Date(bugs$Date,"%m/%d/%y")

order(as.Date(bugs$Date,"%m/%d/%y"))

bugs <- bugs[order(as.Date(bugs$Date," %m/%d/%y ")),]

write.table(bugs, col.names=TRUE, row.names=FALSE, file="allbugsOrdered.

csv", quote = FALSE, sep = ",")

totalBugsByDate <- table(bugs$Date)

plot(totalBugsByDate, type="l", main="New Bugs by Date", col="red",

ylab="Bugs")

Figure 6-2. Cumulative defects over time

Chapter 6 Visualizing Data oVer time

163

runningTotalBugs <- cumsum(totalBugsByDate)

runningTotalBugs

plot(runningTotalBugs, type="l", xlab="", ylab="", pch=15, lty=1,

col="red", main="Cumulative Defects Over Time", axes=FALSE)

axis(1, at=1: length(runningTotalBugs), lab= row.names(totalBugsByDate))

axis(2, las=1, at=10*0:max(runningTotalBugs))

Let’s take a look at the criticality of the bugs, which shows not just when the bugs are

opened but also when the most severe (or non-severe) bugs are being opened.

 Examining the Severity of the Bugs
Remember that when we exported the bug data, we included the Severity field, which

indicates the level of criticality of each bug. Each team and organization might have their

own classification of severity, but generally they include these:

• Blockers are bugs so severe that they prevent the launch of a body

of work. They generally have broken functionality or are missing

sections of a widely used feature. They can also be discrepancies with

contractually or legally binding features such as closed captioning or

digital rights protection.

• Moderates are bugs that are severe but not so damaging that they

gate a release. They can have broken functionality of less-used

features. The scope of accessibility, or how widely used a feature is,

is usually a determining factor between making a bug a blocker or a

critical.

• Minors are bugs with very minimal if any impact and might not even

be noticeable to an end user.

To break out the bugs by severity, we simply call the table() function, just as we did

to break out bugs out by date, but this time add in the Severity column as well:

bugsBySeverity <- table(factor(bugs$Date),bugs$Severity)

Chapter 6 Visualizing Data oVer time

164

This code creates a data structure that looks like so:

 Blocker Minor Moderate

 1/11/21 0 1 0

 1/12/20 0 1 0

 1/12/21 1 2 0

 1/13/20 1 0 0

 1/17/21 2 0 0

 1/18/21 0 0 1

 1/2/21 0 1 0

 1/21/20 1 0 0

 1/22/20 1 0 0

 1/24/20 0 1 0

We can then plot this data object. The way we do this is to use the plot() function to

create a chart for one of the columns and then use the lines() function to draw lines on

the chart for the remaining columns:

plot(bugsBySeverity[,3], type="l", xlab="", ylab="", pch=15, lty=1,

col="orange", main="New Bugs by Severity and Date", axes=FALSE)

lines(bugsBySeverity[,1], type="l", col="red", lty=1)

lines(bugsBySeverity[,2], type="l", col="yellow", lty=1)

axis(1, at=1: length(runningTotalBugs), lab= row.names(totalBugsByDate))

axis(2, las=1, at=0:max(bugsBySeverity[,3]))

legend("topleft", inset=.01, title="Legend", colnames(bugsBySeverity),

lty=c(1,1,1), col= c("red", "yellow", "orange"))

This code produces the chart shown in Figure 6-3.

Chapter 6 Visualizing Data oVer time

165

This is great, but what if we want to see the cumulative bugs by severity? We can

simply use the preceding R code, but instead of plotting out the columns, we can plot out

the cumulative sum of each column:

plot(cumsum(bugsBySeverity[,3]), type="l", xlab="", ylab="", pch=15, lty=1,

col="orange", main="Running Total of Bugs by Severity", axes=FALSE)

lines(cumsum(bugsBySeverity[,1]), type="l", col="red", lty=1)

lines(cumsum(bugsBySeverity[,2]), type="l", col="yellow", lty=1)

axis(1, at=1: length(runningTotalBugs), lab= row.names(totalBugsByDate))

axis(2, las=1, at=0:max(cumsum(bugsBySeverity[,3])))

legend("topleft", inset=.01, title="Legend", colnames(bugsBySeverity),

lty=c(1,1,1), col= c("red", "yellow", "orange"))

Figure 6-3. Our plot() and lines() functions drawing the chart of bugs by severity

Chapter 6 Visualizing Data oVer time

166

This code produces the chart shown in Figure 6-4.

 Adding Interactivity with D3
The previous example is a great way to visualize and disseminate information around the

creation of defects. But what if we could take it a step further and allow the consumers of our

visualizations to dive deeper into the data points that interest them? Say we wanted to allow

the user to mouse over a particular point in a time series and see a list of all the bugs that

make up that data point. We can do just that with D3; let’s walk through it and find out how.

First, let’s create a new file with the base HTML skeletal structure with a reference to

D3.js and save it as timeseriesGranular.htm. We’ll want to use the older version of D3 for

this example—version 3 (d3.v3.js, available in the code download for this book), in that it

allowed for a bit more flexibility and step-by-step building than the newer code structure.

Figure 6-4. Running total of bugs by severity

Chapter 6 Visualizing Data oVer time

167

<html>

<head></head>

<body>

<script src="d3.v3.js"></script>

</body>

</html>

Next, we set some preliminary data in a new script tag. We create an object to

hold margin data for the graphic, as well as height and width. We also create a D3 time

formatter to convert the dates that are read in from string to a native Date object.

<script>

var margin = {top: 20, right: 20, bottom: 30, left: 50},

 width = 960 - margin.left - margin.right,

 height = 500 - margin.top - margin.bottom;

var parseDate = d3.timeFormat("%m/%d/%y").parse;

</script>

 Reading in the Data
We add in some code to read in the data (the allbugsOrdered.csv file that was output

from R earlier). Recall that this file contains the entire bug data ordered by date.

We use the d3.csv() function to read this file:

• The first parameter is the path to the file.

• The second parameter is the function to execute once the data is

read in. It is in this anonymous function that we add most of the

functionality, or at least the functionality that is dependent on having

data to process.

The anonymous function accepts two parameters:

• The first catches any errors that may occur.

• The second is the contents of the file being read in.

Chapter 6 Visualizing Data oVer time

168

In the function, we first loop through the contents of the data and use the date

formatter to convert all the values in the Date column to a native JavaScript Date object:

d3.csv("allbugsOrdered.csv", function(error, data) {

 data.forEach(function(d) {

 d.Date = parseDate(d.Date);

});

});

If we were to console.log() the data, it would be an array of objects that look like

Figure 6-5.

Within the anonymous function but after the loop, we use the d3.nest() function to

create a variable that holds the bug data grouped by date. We name this variable nested_

data:

nested_data = d3.nest()

.key(function(d) { return d.Date; })

.entries(data);

The nested_data variable is now a tree structure—specifically a list that is indexed

by date, and each index has a list of bugs. If we were to console.log() nested_data, it

would be an array of objects that look like Figure 6-6.

Figure 6-5. Our bug data object

Figure 6-6. The array containing our bug data objects

Chapter 6 Visualizing Data oVer time

169

 Drawing on the Page
We are ready to start drawing to the page. So let’s step out of the callback function and go

to the root of the script tag and write out the SVG tag to the page by using the margins,

width, and height that were defined previously:

var svg = d3.select("body").append("svg")

 .attr("width", width + margin.left + margin.right)

 .attr("height", height + margin.top + margin.bottom)

 .append("g")

 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

This is the container in which we draw the axes and the trend lines.

Still at the root level, we add a D3 scale object for both the x- and y-axes, using the

width variable for the x-axis range and the height variable for the y-axis range. We add

the x- and y-axes at the root level, passing in their respective scale objects and orienting

them at the bottom and left.

var xScale = d3.time.scale()

 .range([0, width]);

var yScale= d3.scale.linear()

 .range([height, 0]);

var xAxis = d3.svg.axis()

 .scale(xScale)

 .orient("bottom");

var yAxis = d3.svg.axis()

 .scale(yScale)

 .orient("left");

But they still aren’t showing on the page. We need to return to the anonymous

function that we created in the d3.csv() call and add the nested_data list that we

created as the domain data for the newly created scales:

xScale.domain(d3.extent(nested_data, function(d) { return new Date(d.key); }));

yScale.domain(d3.extent(nested_data, function(d) { return d.values.length; }));

Chapter 6 Visualizing Data oVer time

170

From here, we need to generate the axes. We do this by adding and selecting an

SVG g element, used for generic grouping, and adding this selection to the xAxis()

and yAxis() D3 functions. This also goes in the anonymous callback function that gets

invoked when the data is loaded.

We also need to transform the x-axis by adding the height of the chart so that it is

drawn at the bottom of the graph:

svg.append("g")

 .attr("transform", "translate(0," + height + ")")

 .call(xAxis);

svg.append("g")

 .call(yAxis)

This creates the start of the chart with meaningful axes shown in Figure 6- 7.

The trend line needs to be added. Back at the root level, let’s create a variable named

line to be an SVG line. Assume for a minute that we have already set the data property

for the line. We haven’t yet, but we will in a minute. For the x value of the line, we will

have a function that returns the date filtered through the xScale scale object. For the y

value of the line, we will create a function that returns the bug count values run through

the yScale scale object.

Figure 6-7. Time series beginning to form; x- and y-axes but no line yet

Chapter 6 Visualizing Data oVer time

171

var line = d3.svg.line()

 .x(function(d) { return xScale(new Date(d.key)); })

 .y(function(d) { return yScale(d.values.length); });

Next, we return to the anonymous function that processes the data. Right below the

added axes, we will append an SVG path. We set the nested_data variable as the datum

for the path and the newly created line object as the d attribute. For reference, the d

attribute is where we specify path descriptions. See here for documentation around the d

attribute: https://developer.mozilla.org/en- US/docs/SVG/Attribute/d.

svg.append("path")

 .datum(nested_data)

 .attr("d", line);

We can now start to see something in a browser. The code so far should look like so:

<!DOCTYPE html>

<head>

<meta charset="utf-8">

</head>

<body>

 <script src="d3.v3.js"></script>

<script>

var margin = {top: 20, right: 20, bottom: 30, left: 50},

 width = 960 - margin.left - margin.right,

 height = 500 - margin.top - margin.bottom;

var parseDate = d3.time.format("%m-%d-%Y").parse;

var xScale = d3.time.scale()

 .range([0, width]);

var yScale = d3.scale.linear()

 .range([height, 0]);

var xAxis = d3.svg.axis()

 .scale(xScale)

 .orient("bottom");

var yAxis = d3.svg.axis()

 .scale(yScale)

 .orient("left");

Chapter 6 Visualizing Data oVer time

https://developer.mozilla.org/en-US/docs/SVG/Attribute/d

172

var line = d3.svg.line()

 .x(function(d) { return xScale(new Date(d.key)); })

 .y(function(d) { return yScale(d.values.length); });

var svg = d3.select("body").append("svg")

 .attr("width", width + margin.left + margin.right)

 .attr("height", height + margin.top + margin.bottom)

 .append("g")

 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

d3.csv("allbugsOrdered.csv", function(error, data) {

 data.forEach(function(d) {

 d.Date = parseDate(d.Date);

 });

 nested_data = d3.nest()

 .key(function(d) { return d.Date; })

 .entries(data);

 xScale.domain(d3.extent(nested_data, function(d) { return new

Date(d.key); }));

 yScale.domain(d3.extent(nested_data, function(d) { return

d.values.length; }));

 svg.append("g")

 .attr("transform", "translate(0," + height + ")")

 .call(xAxis);

 svg.append("g")

 .call(yAxis);

 svg.append("path")

 .datum(nested_data)

 .attr("d", line);

});

</script>

</body>

</html>

This code produces the graphic shown in Figure 6-8.

Chapter 6 Visualizing Data oVer time

173

But this isn’t quite right. The shading of the path is based on the browser’s best guess

of intent, shading what it perceives to be the closed areas. Let’s use CSS to explicitly turn

off shading and instead set the color and width of the path line:

<style>

.trendLine {

 fill: none;

 stroke: #CC0000;

 stroke-width: 1.5px;

}

</style>

We created a style rule for any element on the page with the class trendLine. Let’s

next add the class to the SVG path in the same block of code in which we create the path:

Svg.append("path")

 .datum(nested_data)

 .attr("d", line)

 .attr("class", "trendLine");

Figure 6-8. Time series with line data but incorrect fill

Chapter 6 Visualizing Data oVer time

174

This code produces the chart shown in Figure 6-9.

Looking much better! There are some minor things we should change, such as adding

text labels to the y-axis and trimming the width of the axis lines to make them neater:

.axis path{

 fill: none;

 stroke: #000;

 shape-rendering: crispEdges;

}

This will give us tighter-looking axes. We just need to apply the style to the axes when

we create them:

svg.append("g")

 .attr("transform", "translate(0," + height + ")")

 .call(xAxis)

 .attr("class", "axis");

svg.append("g")

 .call(yAxis)

 .attr("class", "axis");

Figure 6-9. Time series with corrected line but unstyled axes

Chapter 6 Visualizing Data oVer time

175

The results can be seen in Figure 6-10.

This is great so far, but it shows no real benefit from doing this in R. In fact, we wrote

quite a bit of additional code just to get parity and didn’t even do any data cleaning that

we did in R.

The real benefit of using D3 is adding interactivity.

 Adding Interactivity
Say we have this time series of new bugs, and we were curious what the bugs were in

that large spike in mid-February. By taking advantage of the fact that we are working in

HTML and JavaScript, we can extend this functionality by adding in a tooltip box that

lists the bugs for each date.

To do this, we first should create obvious areas in which users can mouse over, such

as red circles at each data point or discrete date. To do that, we simply need to create

SVG circles right below where we added in the path, in the anonymous function that

is fired when the external data is read in. We set the nested_data variable as the data

attribute of the circles, make them red with a radius of 3.5, and set their x and y attributes

to be tied to the date and bug totals, respectively:

Figure 6-10. Time series updated with styled axes

Chapter 6 Visualizing Data oVer time

176

svg.selectAll("circle")

.data(nested_data)

.enter().append("circle")

 .attr("r", 3.5)

 .attr("fill", "red")

 .attr("cx", function(d) { return xScale(new Date(d.key)); })

 .attr("cy", function(d) { return yScale(d.values.length);})

This code updates the existing time series so it looks like Figure 6-11. These red

circles are now areas of focus in which users can mouse over and see additional

information.

Let’s next code up a div to act as the tooltip that we will show with relevant bug data.

To do this, we will create a new div, right below where we created the line variable at

the root of the script tag. We do this in D3 once again by selecting the body tag and

appending a div to it, giving it a class and id of tooltip—both so that we can have the

tooltip style apply to it (which we will create in just a minute) and so we can interact

with it by ID later on in the chapter. We will have it hidden by default. We will store a

reference to this div in a variable that we will call tooltip.

Figure 6-11. Circles added to each data point on the line

Chapter 6 Visualizing Data oVer time

177

var tooltip = d3.select("body")

 .append("div")

 .attr("class", "tooltip")

 .attr("id", "tooltip")

 .style("position", "absolute")

 .style("z-index", "10")

 .style("visibility", "hidden");

We next need to style this div using CSS. We adjust the opacity to be only 75 percent

visible, so that when the tooltip shows up over a trend line, we can see the trend line

behind it. We align the text, set the font size, make the div have a white background, and

give it rounded corners.

.tooltip{

 opacity: .75;

 text-align:center;

 font-size:12px;

 width:100px;

 padding:5px;

 border:1px solid #a8b6ba;

 background-color:#fff;

 margin-bottom:5px;

 border-radius: 19px;

 -moz-border-radius: 19px;

 -webkit-border-radius: 19px;

}

We next have to add a mouseover event handler to the circles to populate the tooltip

with information and unhide the tooltip. To do this, we return to the block of code in

which we created the circles and add in a mousemove event handler that fires off an

anonymous function.

Inside the anonymous function, we overwrite the innerHTML of the tooltip to display

the date of the current red circle and how many bugs are associated with that date. We

then loop through that list of bugs and write out the ID of each bug.

svg.selectAll("circle")

 .data(nested_data)

 .enter().append("circle")

Chapter 6 Visualizing Data oVer time

178

 .attr("r", 3.5)

 .attr("fill", "red")

 .attr("cx", function(d) { return xScale(new Date(d.key)); })

 .attr("cy", function(d) { return yScale(d.values.length);})

 .on("mouseover", function(d){

 document.getElementById("tooltip").innerHTML = d.key + " " + d.values.

length + " bugs
";

 for(x=0;x<d.values.length;x++){

 document.getElementById("tooltip").innerHTML += d.values[x].ID + "
";

 }

 tooltip.style("visibility", "visible");

 })

If we want to take this even further, we can create links for each bug ID that link

back to the bug-tracking software, list descriptions of each bug, and if the bug-tracking

software has an API to interface with, we can even have form fields that could let us

update bug information right from this tooltip. Only our imagination and the tools

available to us limit the possibilities of how far we can extend this concept.

Finally, we add a mousemove event handler to the red circles so that we can reposition

the tooltip contextually whenever the users mouse over a red circle. To do this, we use

the d3.mouse object to get the current mouse coordinates. We use these coordinates to

simply reposition the tooltip with CSS. So we don’t cover the red circle with the tooltip,

we offset the top property by 25 pixels and the left property by 75 pixels.

svg.selectAll("circle")

 .data(nested_data)

 .enter().append("circle")

 .attr("r", 3.5)

 .attr("fill", "red")

 .attr("cx", function(d) { return xScale(new Date(d.key)); })

 .attr("cy", function(d) { return yScale(d.values.length);})

 .on("mouseover", function(d){

 document.getElementById("tooltip").innerHTML = d.key + " " + d.values.

length + " bugs
";

 for(x=0;x<d.values.length;x++){

 document.getElementById("tooltip").innerHTML += d.values[x].ID + "
";

Chapter 6 Visualizing Data oVer time

179

 }

 tooltip.style("visibility", "visible");

 })

 .on("mousemove", function(){

 return tooltip.style("top", (d3.mouse(this)[1] + 25)+"px").style("left",

(d3.mouse(this)[0] + 70)+"px");

 });

A tooltip should display when the mouse hovers over one of the red circles (see

Figure 6-12).

The complete source code should now look like this:

<!DOCTYPE html>

<html>

<meta charset="utf-8">

<head>

<style>

body {

 font: 15px sans-serif;

}

Figure 6-12. Completed time series with rollover shown

Chapter 6 Visualizing Data oVer time

180

.trendLine {

 fill: none;

 stroke: #CC0000;

 stroke-width: 1.5px;

}

.axis path{

 fill: none;

 stroke: #000;

 shape-rendering: crispEdges;

}

.tooltip{

 opacity: .75;

 text-align:center;

 font-size:12px;

 width:100px;

 padding:5px;

 border:1px solid #a8b6ba;

 background-color:#fff;

 margin-bottom:5px;

 border-radius: 19px;

 -moz-border-radius: 19px;

 -webkit-border-radius: 19px;

}

</style>

</head>

<body>

 <script src="d3.v3.js"></script>

<script>

var margin = {top: 20, right: 20, bottom: 30, left: 50},

 width = 960 - margin.left - margin.right,

 height = 500 - margin.top - margin.bottom;

var parseDate = d3.time.format("%m/%d/%y").parse;

var xScale = d3.time.scale()

 .range([0, width]);

var yScale = d3.scale.linear()

 .range([height, 0]);

Chapter 6 Visualizing Data oVer time

181

var xAxis = d3.svg.axis()

 .scale(xScale)

 .orient("bottom");

var yAxis = d3.svg.axis()

 .scale(yScale)

 .orient("left");

var line = d3.svg.line()

 .x(function(d) { return xScale(new Date(d.key)); })

 .y(function(d) { return yScale(d.values.length); });

var tooltip = d3.select("body")

 .append("div")

 .attr("class", "tooltip")

 .attr("id", "tooltip")

 .style("position", "absolute")

 .style("z-index", "10")

 .style("visibility", "hidden");

var svg = d3.select("body").append("svg")

 .attr("width", width + margin.left + margin.right)

 .attr("height", height + margin.top + margin.bottom)

 .append("g")

 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

d3.csv("https://jonwestfall.com/data/allbugsOrdered.csv", function(error,

data) {

 data.forEach(function(d) {

 d.Date = parseDate(d.Date);

 });

 nested_data = d3.nest()

 .key(function(d) { return d.Date; })

 .entries(data);

 xScale.domain(d3.extent(nested_data, function(d) { return new

Date(d.key); }));

 yScale.domain(d3.extent(nested_data, function(d) { return

d.values.length; }));

 svg.append("g")

 .attr("transform", "translate(0," + height + ")")

Chapter 6 Visualizing Data oVer time

182

 .call(xAxis)

 .attr("class", "axis");

 svg.append("g")

 .call(yAxis)

 .attr("class", "axis");

 svg.append("path")

 .datum(nested_data)

 .attr("d", line)

 .attr("class", "trendLine");

 svg.selectAll("circle")

 .data(nested_data)

 .enter().append("circle")

 .attr("r", 3.5)

 .attr("fill", "red")

 .attr("cx", function(d) { return xScale(new Date(d.key)); })

 .attr("cy", function(d) { return yScale(d.values.

length);})

 .on("mouseover", function(d){

 document.getElementById("tooltip").

innerHTML = d.key + " " + d.values.length

+ " bugs
";

 for(x=0;x<d.values.length;x++){

 document.getElementById

("tooltip").innerHTML +=

d.values[x].ID + "
";

 }

 tooltip.style("visibility", "visible");

 })

 .on("mousemove", function(){

 return tooltip.style("top", (d3.mouse(this)

[1] + 25)+"px").style("left", (d3.

mouse(this)[0] + 70)+"px");

 });

});

Chapter 6 Visualizing Data oVer time

183

</script>

</body>

</html>

 Summary
This chapter explored time series plots, both philosophically and in the context of using

them to track bug creation over time. We exported the raw bug data from the bug-

tracking software of choice and imported it into R to scrub and analyze.

Within R, we looked at different ways we could model and visualize the data, looking

at both aggregate and granular details such as how the new bugs contribute to a running

total over time or when new bugs are introduced over time. This is especially valuable

when we can put context to the dates we are looking at.

We then read the data into D3 and created an interactive time series that allowed us

to drill down from the high-level trend data into very granular details around each bug

created.

The next chapter explores creating bar charts and how to use them to identify areas

of focus and improvement.

Chapter 6 Visualizing Data oVer time

185
© Tom Barker, Jon Westfall 2022
T. Barker and J. Westfall, Pro Data Visualization Using R and JavaScript,
https://doi.org/10.1007/978-1-4842-7202-2_7

CHAPTER 7

Bar Charts
Chapter 6 explored using time series charts to look at defect data over time, and this

chapter looks at bar charts, which display ordinal or ranked data relative to a specific

data set. They usually consist of an x- and y-axis and have bars or colored rectangles to

indicate values of categories.

William Playfair created the bar chart in the first edition of The Commercial and

Political Atlas in 1786 to show Scotland’s import and export data to and from different

parts of the world (see Figure 7-1). He created it out of necessity; the other charts in

the atlas were time series charts demonstrating hundreds of years’ worth of trade data,

but for Scotland, there was only one year’s worth of data. While using the time series

chart, Playfair saw it as an inferior visualization; a compromise with resources on hand

because it “does not comprehend any portion of time, and it is much inferior in utility to

those that do” (Playfair, 1786, p. 101).

https://doi.org/10.1007/978-1-4842-7202-2_7#DOI

186

Playfair initially thought so little of his invention that he didn’t bother to include it in

the subsequent second and third editions of the atlas. He went on to envision a different

way to show parts of a whole; in doing so, he invented the pie chart for his Statistical

Breviary published in 1801.

The bar chart is a great way to demonstrate ranked data not only because bars are

a clear way to show differences in value but the pattern can also be extended to include

more data points by using different types of bar charts such as stacked bar charts and

grouped bar charts.

 Standard Bar Chart
Let’s take data that you are already familiar with—the bugsBySeverity data from the last

chapter:

head(bugsBySeverity)

Figure 7-1. William Playfair’s bar chart showing Scotland’s import and export data

Chapter 7 Bar Charts

187

 Blocker Minor Moderate

 1/11/21 0 1 0

 1/12/20 0 1 0

 1/12/21 1 2 0

 1/13/20 1 0 0

 1/17/21 2 0 0

 1/18/21 0 0 1

You can create a new list with a sum of each bug type and visualize the totals in a bar

chart like so:

totalBugsBySeverity <- c(sum(bugsBySeverity[,1]), sum(bugsBySeverity[,2]),

sum(bugsBySeverity[,3]))

barplot(totalBugsBySeverity, main="Total Bugs by Severity")

axis(1, at=1: length(totalBugsBySeverity), lab=c("Blocker", "Critical",

"Minor"))

This code produces the chart shown in Figure 7-2.

Figure 7-2. Bar chart of bugs by severity

Chapter 7 Bar Charts

188

 Stacked Bar Chart
Stacked bar charts allow us to show subsections or segments within categories. Suppose

you use the bugsBySeverity time series data and want to look at the breakdown of the

criticality of the new bugs opened each day:

t(bugsBySeverity)

 1/11/21 1/12/20 1/12/21 1/13/20 1/17/21 1/18/21 1/2/21 1/21/20 1/22/20

Blocker 0 0 1 1 2 0 0 1 1

Minor 1 1 2 0 0 0 1 0 0

Moderate 0 0 0 0 0 1 0 0 0

 1/24/20 1/24/21 1/25/20 1/27/21 1/29/21 1/3/20 1/4/20 1/5/20 1/5/21

Blocker 0 0 1 0 0 0 0 0 0

Minor 1 1 0 1 0 1 1 1 1

Moderate 0 0 0 0 1 0 0 0 0

 1/9/20 10/1/20 10/10/20 10/15/20 10/16/20 10/18/20 10/21/20 10/25/20

Blocker 1 0 0 1 0 0 0 1

Minor 0 1 0 0 1 0 1 0

Moderate 0 0 1 0 0 2 1 0

 10/26/20 10/29/20 10/30/20 10/6/20 11/17/20 11/18/20 11/19/20 11/21/20

Blocker 0 1 0 0 0 1 0 0

Minor 0 0 1 1 1 0 1 1

Moderate 1 1 0 0 0 0 0 0

 11/23/20 11/26/20 11/4/20 11/8/20 12/14/20 12/15/20 12/17/20 12/21/20

Blocker 0 2 1 1 1 1 0 1

Minor 1 0 1 0 0 0 1 0

Moderate 0 0 0 0 1 0 0 0

 12/22/20 12/23/20 12/24/20 12/27/20 12/29/20 12/3/20 12/31/20 2/12/21

Blocker 1 0 1 0 0 1 0 1

Minor 0 1 0 0 1 0 1 0

Moderate 1 0 0 1 0 0 0 0

Chapter 7 Bar Charts

189

 2/13/21 2/14/20 2/15/20 2/15/21 2/16/20 2/22/21 2/24/20 2/25/21

Blocker 0 1 0 1 1 1 1 0

Minor 0 0 1 0 0 1 0 1

Moderate 1 0 0 0 0 0 0 0

 2/26/21 2/28/21 2/3/21 2/4/21 2/8/21 3/1/20 3/1/21 3/11/21 3/14/21

Blocker 1 1 1 1 1 0 1 2 0

Minor 1 0 0 0 0 0 0 1 1

Moderate 0 0 0 0 0 2 0 0 0

 3/17/21 3/2/20 3/2/21 3/22/20 3/23/21 3/24/20 3/25/21 3/26/20 3/28/20

Blocker 1 1 1 1 0 0 1 0 1

Minor 0 0 0 1 1 0 0 1 0

Moderate 0 0 0 0 0 1 0 0 0

 3/3/21 3/31/20 3/31/21 3/6/21 3/7/20 3/7/21 4/12/21 4/13/20 4/15/21

Blocker 1 0 1 1 0 0 0 0 0

Minor 0 0 0 0 0 0 0 1 0

Moderate 0 1 0 0 1 1 1 0 1

 4/18/21 4/19/21 4/20/20 4/25/20 4/26/21 4/27/20 4/29/21 4/4/20 4/5/21

Blocker 0 0 1 0 1 1 1 0 2

Minor 2 1 0 1 0 0 0 1 1

Moderate 0 0 0 0 0 0 0 0 0

 4/7/20 4/8/20 5/1/20 5/10/20 5/11/21 5/12/20 5/14/21 5/16/21 5/17/20

Blocker 1 1 2 0 1 1 0 1 1

Minor 0 0 0 1 0 1 1 0 0

Moderate 0 1 0 0 0 0 0 0 0

 5/17/21 5/2/21 5/20/20 5/20/21 5/22/20 5/24/21 5/25/20 5/26/21 5/27/20

Blocker 1 1 0 1 2 0 0 1 1

Minor 0 0 0 0 0 1 0 0 0

Moderate 0 0 1 1 0 0 1 0 0

 5/27/21 5/28/20 5/28/21 5/29/21 5/30/20 5/31/20 5/6/20 5/8/20 6/11/20

Blocker 1 0 1 2 1 1 0 1 1

Minor 0 1 0 0 0 0 1 0 0

Moderate 0 0 0 0 0 0 0 0 0

Chapter 7 Bar Charts

190

 6/11/21 6/14/20 6/16/21 6/2/21 6/20/20 6/28/20 6/3/20 6/3/21 6/4/20

Blocker 1 1 2 1 1 1 0 1 0

Minor 0 0 0 0 0 0 0 0 1

Moderate 0 0 0 0 0 0 1 0 0

 6/4/21 6/6/21 6/7/20 6/7/21 6/8/21 6/9/21 7/14/20 7/18/20 7/2/20

Blocker 0 1 0 1 0 0 1 2 0

Minor 1 0 1 0 1 1 0 0 1

Moderate 0 0 1 0 0 0 0 0 0

 7/22/20 7/23/20 7/25/20 7/28/20 7/29/20 7/9/20 8/10/20 8/17/20 8/2/20

Blocker 1 0 0 1 0 0 0 0 0

Minor 0 1 0 0 1 1 1 0 1

Moderate 0 0 1 0 0 0 0 2 0

 8/21/20 8/22/20 8/23/20 8/24/20 8/26/20 8/27/20 8/28/20 8/29/20 8/3/20

Blocker 1 0 0 2 1 0 0 1 0

Minor 0 0 1 0 0 1 1 0 1

Moderate 0 1 0 0 0 0 0 0 0

 8/6/20 9/10/20 9/11/20 9/14/20 9/16/20 9/2/20 9/21/20 9/8/20

Blocker 1 1 1 0 0 0 0 0

Minor 0 0 0 0 0 1 1 0

Moderate 0 0 0 1 1 0 0 1

You can represent the following data with a stacked bar chart, as shown in Figure 7-3:

barplot(t(bugsBySeverity), col=c("#CCCCCC", "#666666", "#AAAAAA"))

legend("topleft", inset=.01, title="Legend", c("Blocker", "Criticals",

"Minors"), fill=c("#CCCCCC", "#666666", "#AAAAAA"))

Chapter 7 Bar Charts

191

The total bugs are represented by the full height of the bar, and the colored segments

of each bar represent the criticality of the bugs. Stacked bar charts allow us to show

nuance in our data, although one may want to reduce the number of dates to get a

clearer picture when visualizing.

 Grouped Bar Chart
Grouped bar charts allow us to show the same nuance as stacked bar charts, but instead

of placing the segments on top of each other, we split them into side-by-side groupings.

Figure 7-4 shows that each date on the x-axis has three bars associated with it, one for

each criticality category:

barplot(t(bugsBySeverity), beside=TRUE, col=c("#CCCCCC", "#666666",

"#AAAAAA"))

legend("topleft", inset=.01, title="Legend", c("Blocker", "Criticals",

"Minors"), fill=c("#CCCCCC", "#666666", "#AAAAAA"))

Figure 7-3. Stacked bar chart of bugs by severity and date. The bars are not all of
the same height, since the total number of bugs each day differs

Chapter 7 Bar Charts

192

At a glance, it may appear that Figures 7-3 and 7-4 are identical, due to the density of

the data. To avoid this, we can use the following code to reduce the number of data points

to just show us five days’ worth of data. Try using both snippets to see the changes.

barplot(t(bugsBySeverity[1:10,]), col=c("#CCCCCC", "#666666", "#AAAAAA"))

legend("topleft", inset=.01, title="Legend", c("Blocker", "Criticals",

"Minors"), fill=c("#CCCCCC", "#666666", "#AAAAAA"))

versus

barplot(t(bugsBySeverity[1:10,]), beside=TRUE, col=c("#CCCCCC", "#666666",

"#AAAAAA"))

legend("topleft", inset=.01, title="Legend", c("Blocker", "Criticals",

"Minors"), fill=c("#CCCCCC", "#666666", "#AAAAAA"))

 Visualizing and Analyzing Production Incidents
If you work on a product that gets used by someone—an end user, a consuming service,

or even an internal customer—you most likely have experienced a production incident.

Production incidents occur when some part of an application misbehaves for a user in

production. It is very much like a bug, but it is a bug that is experienced and reported by

your customer.

Figure 7-4. Grouped bar chart of bugs by severity and date

Chapter 7 Bar Charts

193

Just like bugs, production incidents are normal and expected results of software

development. There are three main things to think about when talking about incidents:

• Severity, or how impactful is the error being reported: There is a

big difference between a site outage and a small layout error.

• Frequency, or how often incidents are occurring or recurring: If

your web app is riddled with issues, your customer experience, your

brand, and your regular flow of work are all affected.

• Duration, or how long individual incidents linger: The longer they

linger, the more customers are affected, and the worse the impact on

your brand.

Handling production incidents is a big part of operationalizing your products and

maturing your organization. Depending on how severe the incidents are, they can be

disruptive to your regular body of work; the team might need to stop everything and

work on a fix for the issue. Lesser-priority items can be queued and introduced to the

regular body of work alongside regular feature work.

Just as important as handling production incidents is being able to analyze trends in

production incidents to identify problem areas. Problem areas are usually features or sections

that have frequent issues in production. Once we have identified problem areas, we can do root

cause analysis and potentially start to build proactive scaffolding around these areas.

Note Proactive scaffolding is a term I have coined that describes building
failovers or additional safety rails to prevent issues in problem areas from
recurring. proactive scaffolding can be anything from detecting when users are
close to capacity limits (such as the browser cookie limit or application heap size
and correcting before an issue happens) to noting performance issues with
 third- party assets and intercepting and optimizing them before they are presented
to a client.

Another interesting way to handle production incidents is how Heroku used to

handle them in the past: putting them up on a timeline along with a visualization of

month-over- month uptime and making it publicly available. Heroku’s production

incident timeline was available at https://status.heroku.com/; see Figure 7-5.

Chapter 7 Bar Charts

https://status.heroku.com/;

194

Figure 7-5. Heroku status page

Chapter 7 Bar Charts

195

GitHub also used to have a great status page that visualizes key metrics around

their performance and uptime (see Figure 7-6). Ironically, they’ve now switched to the

timeline approach that Heroku abandoned (see Figure 7-7, from www.githubstatus.

com/history).

Chapter 7 Bar Charts

http://www.githubstatus.com/history
http://www.githubstatus.com/history

196

Figure 7-6. GitHub status page

Chapter 7 Bar Charts

197

For our purposes, this chapter uses bar charts to look at production incidents by

feature to start to identify problem areas within our own products.

 Plotting Data on a Bar Chart with R
If we want to plot out our production incidents, we must first get an export of the

data, just as we needed to do for bugs. Because production incidents are generally

single-hit items, companies usually use a range of methods to track them, from

ticketing systems such as Jira (www.atlassian.com/software/jira/overview) to

maintaining a spreadsheet of items, whatever works—as long as we can retrieve the

raw data. (Jon has made sample data available here: http://jonwestfall.com/data/

productionincidents.csv.)

Once we have the raw data, it probably looks something like the following: a comma-

separated flat list with columns for an ID, a date stamp, and a description. There also

should be a column that lists the feature or section of the application in which the

incident occurred.

Figure 7-7. GitHub’s timeline

Chapter 7 Bar Charts

http://www.atlassian.com/software/jira/overview
http://jonwestfall.com/data/productionincidents.csv
http://jonwestfall.com/data/productionincidents.csv

198

ID,DateOpened,DateClosed,Description,Feature,Severity

880373,5/22/21 10:14,5/25/21 11:52,Fwd: 2 new e-books Associate

Editors,General Inquiry,1

837947,4/29/21 12:35,5/7/21 14:09,Fwd: New Resource to Post,General

Inquiry,2

489036,4/23/21 14:38,4/27/21 9:00,STP ebook editor with finished

book,General Inquiry,1

443617,1/25/21 17:43,1/26/21 8:49,New member - IRC Committee at STP,General

Inquiry,2

911894,1/18/21 10:25,1/20/21 8:51,Fwd: Updates to International Relations

Committee page,General Inquiry,1

974124,1/11/21 14:55,1/12/21 10:55,Fwd: New Resource to Post,General

Inquiry,2

341352,1/2/21 10:51,1/5/21 16:26,New eBooks,eBook Publishing,1

Let’s read the raw data into R and store it in a variable called prodData:

> prodIncidentsFile <- "http://jonwestfall.com/data/productionincidents.csv";

> prodData <- read.table(prodIncidentsFile, sep=",", header=TRUE)

> prodData

 ID DateOpened DateClosed Description

 Feature Severity

1 880373 5/22/21 10:14 5/25/21 11:52 Fwd: 2 new e-books Associate Editors

 General Inquiry 1

2 837947 4/29/21 12:35 5/7/21 14:09 Fwd: New Resource to Post

 General Inquiry 2

3 489036 4/23/21 14:38 4/27/21 9:00 STP ebook editor with finished book

 General Inquiry 1

4 443617 1/25/21 17:43 1/26/21 8:49 New member - IRC Committee at STP

 General Inquiry 2

5 911894 1/18/21 10:25 1/20/21 8:51 Fwd: Updates to International

 Relations Committee page

 General Inquiry 1

6 974124 1/11/21 14:55 1/12/21 10:55 Fwd: New Resource to Post

 General Inquiry 2

7 341352 1/2/21 10:51 1/5/21 16:26 New eBooks

 eBook Publishing 1

Chapter 7 Bar Charts

199

We want to group them by the Feature column so that we can chart feature totals.

To do this, we use the aggregate() function in R. The aggregate() function takes an

R object, a list to use as grouping elements, and a function to apply to the grouping

elements. So suppose we call the aggregate() function, pass in the ID column as the

R object, have it grouped by the Feature column, and have R get the length for each

feature grouping:

prodIncidentByFeature <- aggregate(prodData$ID, by=list(Feature=prodData$Fe

ature), FUN=length)

This code creates an object that looks like the following:

> prodIncidentByFeature

 Feature x

1 eBook Publishing 1

2 General Inquiry 6

We can then pass this object into the barplot() function to get the chart shown in

Figure 7-8.

barplot(prodIncidentByFeature$x)

Figure 7-8. Beginning a bar chart

Chapter 7 Bar Charts

200

This is a nice start and does tell a story, but it’s not very descriptive. Besides the fact

that the x-axis isn’t labeled, the problem areas are obscured by not ordering the results.

 Ordering Results
Let’s use the order() function to order the results by the total count of each incident by

feature:

prodIncidentByFeature <- prodIncidentByFeature[order(prodIncidentByFeature$x),]

We can then format the bar chart to highlight this ordering by layering the bars

horizontally and rotating the text 90 degrees.

To rotate the text, we must change our graphical parameters using the par()

function. Updating the graphical parameters has global implications, meaning that

any chart that we create after updating inherits the changes, so we need to preserve

the current settings and reset them after we create our bar chart. We store our current

settings in a variable that we call opar:

opar <- par(no.readonly=TRUE)

Note If you are following along in an r command line, the previous line by itself
does not generate anything; it just sets graphical parameters.

We then pass new parameters into the par() call. We can use the las parameter to

format the axis. The las parameter accepts the following values:

par(las=3)

• 0 is the default behavior where the text is parallel to the axis.

• 1 explicitly makes the text horizontal.

• 2 makes the text perpendicular to the axis.

• 3 explicitly makes the text vertical.

We then call barplot() again, but this time pass in the parameter horiz=TRUE, to

have R draw the bars horizontally instead of vertically:

Chapter 7 Bar Charts

201

barplot(prodIncidentByFeature$x, xlab="Number of Incidents", names.ar

g=prodIncidentByFeature$Feature, horiz=TRUE, space=1, cex.axis=0.6, cex.
names=0.8, main="Production Incidents by Feature", col= "#CCCCCC")

And, finally, we restore the saved settings so that future charts don't

inherit this chart's settings:

> par(opar)

This code produces the visualization shown in Figure 7-9.

From this chart, you can see that the biggest problem area is the category labeled

General Inquiry, followed by eBook Publishing.

Figure 7-9. Bar chart of production incidents by feature

Chapter 7 Bar Charts

202

 Creating a Stacked Bar Chart
How severe are the issues around these features? Let’s next create a stacked bar chart to

see the breakdown of severity for each production incident. To do that, we must create

a table in which we break down our production incidents by feature and by severity. We

can use the table() function for this, as we did for bugs in the last chapter:

prodIncidentByFeatureBySeverity <- table(factor(prodData$Feature),prodData$

Severity)

This code creates a variable formatted as shown in Figure 7-10, with rows

representing each feature and columns representing each level of severity:

prodIncidentByFeatureBySeverity

 1 2

 eBook Publishing 1 0

 General Inquiry 3 3

opar <- par(no.readonly=TRUE)

par(las=3, mar=c(5,5,5,5))

barplot(t(prodIncidentByFeatureBySeverity), xlab="Number of Incidents",

names.arg=rownames(prodIncidentByFeatureBySeverity), horiz=TRUE, space=1,

cex.axis=0.6, cex.names=0.8, main="Production Incidents by Feature",

col=c("#CCCCCC", "#666666", "#AAAAAA", "#333333"))

legend("bottom", inset=.01, title="Legend", c("Sev1", "Sev2"),

fill=c("#CCCCCC", "#666666"))

par(opar)

Chapter 7 Bar Charts

203

Interesting! We lost our ordering, but that’s because we have a number of new

data points to choose from. High-level aggregates are less relevant for this chart; more

important is the breakdown of severity.

 Bar Charts in D3
So now you know the benefits of having bar charts to aggregate data at a high level and

of getting the granular breakdown that stacked bar charts can expose. Let’s switch gears

and use D3 to see how to create a high-level bar chart that allows us to drill into each bar

to see a granular representation of the data at runtime.

We start by creating a bar chart in D3, version 3, and then create a stacked bar chart.

When our users mouse over the bar chart, we will overlay the stacked bar chart to show

how the data is broken down in real time.

Figure 7-10. Stacked bar chart of production incidents by feature and by severity

Chapter 7 Bar Charts

204

 Creating a Vertical Bar Chart
Because we made a horizontal bar chart in D3 back in Chapter 4, we will now make a

vertical bar chart. Following the same pattern that we established in previous chapters,

we first create a base HTML skeletal structure that includes a link to the D3 version 3

library. We use the same base style rules that we used in the last chapter for body text

and axis path and an additional rule to color all elements within a bar class a dark gray.

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title></title>

<script src="d3.v3.js"></script>

<style type="text/css">

 body {

 font: 15px sans-serif;

 }

 .axis path{

 fill: none;

 stroke: #000;

 shape-rendering: crispEdges;

 }

 .bar {

 fill: #666666;

 }

</style>

</head>

<body></body>

</html>

Next, we create the script tag to hold all the charting code and the initial set of

variables to hold the sizing information: the base height and width, D3 scale objects for

the x- and y-coordinate information, an object to hold the margin information, and an

adjusted height value that takes the top and bottom margins out of the total height:

Chapter 7 Bar Charts

205

<script>

var w = 960,

 h = 500,

 x = d3.scale.ordinal().rangeRoundBands([0, w]),

 y = d3.scale.linear().range([0, h]),

 z = d3.scale.ordinal().range(["lightpink", "darkgray", "lightblue"])

 margin = {top: 20, right: 20, bottom: 30, left: 40},

 adjustedHeight = 500 - margin.top - margin.bottom;

</script>

We next create the x-axis object. Remember from previous chapters that the axis is

not yet drawn, so we need to call it later within the Scalable Vector Graphics (SVG) tag

that we will create to draw the axis:

var xAxis = d3.svg.axis()

 .scale(x)

 .orient("bottom");

Let’s draw the SVG container to the page. This will be the parent container for

everything else that we will draw to the page.

var svg = d3.select("body").append("svg")

 .attr("width", w)

 .attr("height", h)

 .append("g")

The next step is to read in the data. We will use the same data source as our R

example: the flat file productionIncidents.txt. We can read this in using the d3.csv()

function to read in and parse the file. Once the contents of the file are read in, they are

stored in the variable data, but if any error occurs, we will store the error details in a

variable that we call error.

d3.csv("http://jonwestfall.com/data/productionincidents.csv",

function(error, data) {

 }

Within the scope of this d3.csv() function is where we will put the majority of our

remaining functionality because that functionality depends on having the data proceed.

Chapter 7 Bar Charts

206

Let’s aggregate the data by feature. To do this, we use the d3.nest() function and set

the key to the Feature column:

nested_data = d3.nest()

 .key(function(d) { return d.Feature; })

 .entries(data);

This code creates an array of objects.

Within this array, each object has a key that lists the feature and an array of objects

that list each production incident.

We use this data structure to create the core bar chart. We make a function to do this:

function barchart(){

}

In this function, we set the transform attribute of the svg element, which sets the

coordinates to contain the image that will be drawn. In this case, we constrain it to the

margin left and top values:

svg.attr("transform", "translate(" + margin.left + "," + margin.top + ")");

We also create scale objects for the x- and y-axes. For bar charts, we generally use

ordinal scales for the x-axis because they are used for discrete values such as categories.

More information about ordinal scales in D3 can be found in the documentation at

https://github.com/mbostock/d3/wiki/Ordinal- Scales.

We also create scale objects to map the data to the bounds of the chart:

var xScale = d3.scale.ordinal()

 .rangeRoundBands([0, w], .1);

var yScale = d3.scale.linear()

 .range([h, 0]);

xScale.domain(data.map(function(d) { return d.key; }));

yScale.domain([0, d3.max(nested_data, function(d) { return d.values.

length; })]);

We next need to draw the bars. We create a selection based on the Cascading Style

Sheets (CSS) class that we assign to the bars. We bind the nested_data to the bars, create

SVG rectangles for each key value in nested_data, and assign the bar class to each

Chapter 7 Bar Charts

https://github.com/mbostock/d3/wiki/Ordinal-Scales

207

rectangle; we’ll define the class style rule soon. We set the x coordinate of each bar to the

ordinal scale and set both the y coordinate and the height attribute to the linear scale.

We also add a mouseover event handler and put a call to a function that we will soon

create called transitionVisualization(). This function transitions the stacked bar

chart that we will make over the bar chart when we mouse over one of the bars.

svg.selectAll(".bar")

 .data(nested_data)

 .enter().append("rect")

 .attr("class", "bar")

 .attr("x", function(d) { return xScale(d.key); })

 .attr("width", xScale.rangeBand())

 .attr("y", function(d) { return yScale(d.values.length) - 50; })

 .attr("height", function(d) { return h - yScale(d.values.length); })

 .on("mouseover", function(d){

 transitionVisualization (1)

 })

Let’s also add in a call to a function that we will create called drawAxes():

drawAxes()

The complete barchart() function looks like this:

 function barchart(){

 svg.attr("transform", "translate(" + margin.left + "," + margin.

top + ")");

 var xScale = d3.scale.ordinal()

 .rangeRoundBands([0, w], .1);

 var yScale = d3.scale.linear()

 .range([h, 0]);

 xScale.domain(nested_data.map(function(d) { return d.key; }));

 yScale.domain([0, d3.max(nested_data, function(d) { return d.values.

length; })]);

 svg.selectAll(".bar")

 .data(nested_data)

 .enter().append("rect")

 .attr("class", "bar")

Chapter 7 Bar Charts

208

 .attr("x", function(d) { return xScale(d.key); })

 .attr("width", xScale.rangeBand())

 .attr("y", function(d) { return yScale(d.values.length) - 50; })

 .attr("height", function(d) { return h - yScale(d.values.length); })

 .on("mouseover", function(d){

 transitionVisualization (1)

 })

 drawAxes()

 }

Let’s create the drawAxes() function. We place this function outside the scope of the

d3.csv() function, out at the root of the script tag.

For this chart, let’s go with a little more of a minimalist approach and draw only the

x-axis. Just like the last chapter, we draw SVG g elements and call the xAxis object:

function drawAxes(){

 svg.append("g")

 .attr("class", "x axis")

 .attr("transform", "translate(0," + adjustedHeight + ")")

 .call(xAxis);

}

This draws the x-axis that gives the bar chart its category labels.

 Creating a Stacked Bar Chart
Now that we have a bar chart, let’s create a stacked bar chart. First, let’s shape the data.

We want an array of objects in which each object represents a feature and has a count of

total incidents for each level.

Let’s start with a new array called grouped_data:

var grouped_data = new Array();

Let’s iterate through nested_data because nested_data already has taken care of

grouping by feature:

nested_data.forEach(function (d) {

}

Chapter 7 Bar Charts

209

Within each pass through nested_data, we create a temporary object and iterate

through each incident within the values array:

tempObj = {"Feature": d.key, "Sev1":0, "Sev2":0, "Sev3":0, "Sev4":0};

 d.values.forEach(function(e){

 }

Within each iteration in the values array, we test the severity of the current incident

and increment the appropriate property of the temporary object:

if(e.Severity == 1)

 tempObj.Sev1++;

else if(e.Severity == 2)

 tempObj.Sev2++

else if(e.Severity == 3)

 tempObj.Sev3++;

else if(e.Severity == 4)

 tempObj.Sev4++;

The complete code to create the grouped_data array looks like the following:

nested_data.forEach(function (d) {

 tempObj = {"Feature": d.key, "Sev1":0, "Sev2":0, "Sev3":0, "Sev4":0};

 d.values.forEach(function(e){

 if(e.Severity == 1)

 tempObj.Sev1++;

 else if(e.Severity == 2)

 tempObj.Sev2++

 else if(e.Severity == 3)

 tempObj.Sev3++;

 else if(e.Severity == 4)

 tempObj.Sev4++;

 })

 grouped_data[grouped_data.length] = tempObj

});

Chapter 7 Bar Charts

210

Perfect! Next, we create a function in which we draw the stacked bar chart within the

scope of the d3.csv() function:

function stackedBarChart(){

}

Here’s where it gets interesting. Using the d3.layout.stack() function, we

transpose our data so that we have an array in which each index represents one of the

levels of severity and contains an object for each feature that has a count of each incident

for the respective level of severity:

var sevStatus = d3.layout.stack()(["Sev1", "Sev2", "Sev3", "Sev4"].

map(function(sevs)

 {

 return grouped_data.map(function(d) {

 return {x: d.Feature, y: +d[sevs]};

 });

 }));

We next use sevStatus to create domain maps for the x and y values of the bar

segments that we will draw:

x.domain(sevStatus[0].map(function(d) { return d.x; }));

y.domain([0, d3.max(sevStatus[sevStatus.length - 1], function(d) { return

d.y0 + d.y; })]);

Next, we draw SVG g elements for each index in the sevStatus array. They serve as

containers in which we draw the bars. We bind sevStatus to these grouping elements

and set the fill attribute to return one of the colors from the array of colors.

var sevs = svg.selectAll("g.sevs")

 .data(sevStatus)

 .enter().append("g")

 .attr("class", "sevs")

 .style("fill", function(d, i) { return z(i); });

Finally, we draw the bars within the groupings that we just created. We bind a

generic function to the data attribute of the bars that just passes through whatever data

is passed to it; this inherits from the SVG groupings.

Chapter 7 Bar Charts

211

We draw the bars with the opacity set to 0, so the bars are not initially visible. We also

attach mouseover and mouseout event handlers, to call transitionVisualization()—

passing 1 when the mouseover event is fired and 0 when the mouseout event is fired (we

will flesh out the functionality of transitionVisualization() very soon).

var rect = sevs.selectAll("rect")

 .data(function(data){ return data; })

 .enter().append("svg:rect")

 .attr("x", function(d) { return x(d.x) + 13; })

 .attr("y", function(d) { return -y(d.y0) - y(d.y) + adjustedHeight; })

 .attr("class", "groupedBar")

 .attr("opacity", 0)

 .attr("height", function(d) { return y(d.y) ; })

 .attr("width", x.rangeBand() - 20)

 .on("mouseover", function(d){

 transitionVisualization (1)

 })

 .on("mouseout", function(d){

 transitionVisualization (0)

 });

The complete stacked bar chart code should look like the following

function groupedBarChart(){

 var sevStatus = d3.layout.stack()(["Sev1", "Sev2", "Sev3", "Sev4"].

map(function(sevs)

 {

 return grouped_data.map(function(d) {

 return {x: d.Feature, y: +d[sevs]};

 });

 }));

 x.domain(sevStatus[0].map(function(d) { return d.x; }));

 y.domain([0, d3.max(sevStatus[sevStatus.length - 1], function(d) {

return d.y0 + d.y; })]);

 // Add a group for each sev category.

 var sevs = svg.selectAll("g.sevs")

 .data(sevStatus)

Chapter 7 Bar Charts

212

 .enter().append("g")

 .attr("class", "sevs")

 .style("fill", function(d, i) { return z(i); })

 .style("stroke", function(d, i) { return d3.rgb(z(i)).darker(); });

 var rect = sevs.selectAll("rect")

 . data(function(data){ return data; })

 .enter().append("svg:rect")

 .attr("x", function(d) { return x(d.x) + 13; })

 . attr("y", function(d) { return -y(d.y0) - y(d.y) +

adjustedHeight; })

 .attr("class", "groupedBar")

 .attr("opacity", 0)

 .attr("height", function(d) { return y(d.y) ; })

 .attr("width", x.rangeBand() - 20)

 .on("mouseover", function(d){

 transitionVisualization (1)

 })

 .on("mouseout", function(d){

 transitionVisualization (0)

 });

 }

 Creating an Overlaid Visualization
But we’re not quite done yet. We’ve been referencing this transitionVisualization()

function, but we haven’t yet defined it. Let’s take care of that right now. Remember

how we’ve been using it: when a user mouses over a bar in our bar chart, we call

transitionVisualization() and pass in a 1. When a user mouses over a bar in our stacked

bar chart, we also call transitionVisualization() and pass in a 1. But when a user mouses

off a bar in the stacked bar chart, we call transitionVisualization() and pass in a 0.

So the parameter that we pass in sets the opacity of our stacked bar chart. Because we

initially draw the stacked bar chart with the opacity at 0, we only ever see it when a user rolls

over a bar in the bar chart, and it gets hidden again when the user rolls off of the bar.

To create this effect, we use a D3 transition. Transitions are much like tweens in

other languages such as ActionScript 3. We create a D3 selection (in this case, we can

Chapter 7 Bar Charts

213

select all elements of class groupedBar), call transition(), and set the attributes of that

selection that we want to change:

function transitionVisualization(vis){

 var rect = svg.selectAll(".groupedBar")

 .transition()

 .attr("opacity", vis)

}

We’ve now got our entire visualization, as can be seen in Figure 7-11.

The completed code looks like the following, and although it’s hard to demonstrate

this functionality via a printed medium, you can see the working model on Jon’s website

(available at https://jonwestfall.com/d3/ch7.d3.example.htm) or put the code onto

a local web server and run it yourself:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <title></title>

 <script src="d3.v3.js"></script>

Figure 7-11. Stacked bar chart of production incidents by feature and by severity

Chapter 7 Bar Charts

https://jonwestfall.com/d3/ch7.d3.example.htm

214

 <style type="text/css">

 body {

 font: 15px sans-serif;

 }

 .axis path{

 fill: none;

 stroke: #000;

 shape-rendering: crispEdges;

 }

 .bar {

 fill: #666666;

 }

 </style> </head>

 <body>

 <script type="text/javascript">

var w = 960,

 h = 500,

 x = d3.scale.ordinal().rangeRoundBands([0, w]),

 y = d3.scale.linear().range([0,h]),

 z = d3.scale.ordinal().range(["lightpink", "darkgray", "lightblue"])

 margin = {top: 20, right: 20, bottom: 30, left: 40},

 adjustedHeight = 500 - margin.top - margin.bottom;

 var xAxis = d3.svg.axis()

 .scale(x)

 .orient("bottom");

 var svg = d3.select("body").append("svg")

 .attr("width", w)

 .attr("height", h)

 .append("g")

 function drawAxes(){

 svg.append("g")

 .attr("class", "x axis")

 .attr("transform", "translate(0," + adjustedHeight + ")")

 .call(xAxis);

 }

Chapter 7 Bar Charts

215

 function transitionVisuaization(vis){

 var rect = svg.selectAll(".groupedBar")

 .transition()

 .attr("opacity", vis)

 }

 d3.csv("https://jonwestfall.com/data/productionincidents.csv",

function(error, data) {

 nested_data = d3.nest()

 .key(function(d) { return d.Feature; })

 .entries(data);

 var grouped_data = new Array();

 //for stacked bar chart

 nested_data.forEach(function (d) {

 tempObj = {"Feature": d.key, "Sev1":0, "Sev2":0,

"Sev3":0, "Sev4":0};

 d.values.forEach(function(e){

 if(e.Severity == 1)

 tempObj.Sev1++;

 else if(e.Severity == 2)

 tempObj.Sev2++

 else if(e.Severity == 3)

 tempObj.Sev3++;

 else if(e.Severity == 4)

 tempObj.Sev4++;

 })

 grouped_data[grouped_data.length] = tempObj

 });

function stackedBarChart(){

 var sevStatus = d3.layout.stack()(["Sev1", "Sev2", "Sev3", "Sev4"].

map(function(sevs) {

 return grouped_data.map(function(d) {

 return {x: d.Feature, y: +d[sevs]};

 });

 }));

Chapter 7 Bar Charts

216

 x.domain(sevStatus[0].map(function(d) { return d.x; }));

 y.domain([0, d3.max(sevStatus[sevStatus.length - 1], function(d) { return

d.y0 + d.y; })]);

 // Add a group for each sev category.

 var sevs = svg.selectAll("g.sevs")

 .data(sevStatus)

 .enter().append("g")

 .attr("class", "sevs")

 .style("fill", function(d, i) { return z(i); });

 var rect = sevs.selectAll("rect")

 .data(function(data){ return data; })

 .enter().append("svg:rect")

 .attr("x", function(d) { return x(d.x) + 13; })

 .attr("y", function(d) { return -y(d.y0) - y(d.y) + adjustedHeight; })

 .attr("class", "groupedBar")

 .attr("opacity", 0)

 .attr("height", function(d) { return y(d.y) ; })

 .attr("width", x.rangeBand() - 20)

 .on("mouseover", function(d){

 transitionVisuaization(1)

 })

 .on("mouseout", function(d){

 transitionVisuaization(0)

 });

 }

 function barchart(){

 svg.attr("transform", "translate(" + margin.left + "," + margin.

top + ")");

 var xScale = d3.scale.ordinal()

 .rangeRoundBands([0, w], .1);

 var yScale = d3.scale.linear()

 .range([h, 0]);

 xScale.domain(nested_data.map(function(d) { return d.key; }));

 yScale.domain([0, d3.max(nested_data, function(d) { return d.values.

length; })]);

Chapter 7 Bar Charts

217

 svg.selectAll(".bar")

 .data(nested_data)

 .enter().append("rect")

 .attr("class", "bar")

 .attr("x", function(d) { return xScale(d.key); })

 .attr("width", xScale.rangeBand())

 .attr("y", function(d) { return yScale(d.values.length) - 50; })

 .attr("height", function(d) { return h - yScale(d.values.length); })

 .on("mouseover", function(d){

 transitionVisuaization(1)

 })

 stackedBarChart()

 drawAxes()

 }

 barchart();

});

 </script>

 </body>

</html>

 Summary
This chapter looked at using bar charts to display ranked data in the context of

production incidents. Because production incidents are essentially direct feedback from

your user base around how your product is misbehaving or failing, managing production

incidents is a critical piece of any mature engineering organization.

Managing production incidents isn’t simply about responding to issues as they

arise, however; it is also about analyzing the data around your incidents: what areas of

your application are breaking frequently, what unexpected patterns of use you see in

production that could cause these recurring issues, how to build proactive scaffolding

to prevent these and future issues. All these are questions you can answer only by fully

understanding your product and your data. In this chapter, you took your first step

toward that greater understanding.

Chapter 7 Bar Charts

219
© Tom Barker, Jon Westfall 2022
T. Barker and J. Westfall, Pro Data Visualization Using R and JavaScript,
https://doi.org/10.1007/978-1-4842-7202-2_8

CHAPTER 8

Correlation Analysis
with Scatter Plots
In the last chapter, you looked at using bar charts to analyze production incidents. You

saw that bar charts are great for displaying the differences in a ranked data set, and you

used this idea to identify areas in which issues recurred. You also used stacked bar charts

to see the granular breakdown in the severity of production incidents.

This chapter looks at correlation analysis with scatter plots. Scatter plots are charts

that plot two independent data sets on their own axes, displayed as points on a Cartesian

grid (x and y coordinates). As you’ll see, scatter plots are used to try and identify

relationships between the two data points.

Note Michael Friendly and Daniel Denis have published a thoughtful and
thoroughly researched dissertation on the history of scatter plots, originally
published by the Journal of the History of the Behavioral Sciences, Vol. 41, in 2005
and available on Friendly’s website at www.datavis.ca/papers/friendly-
scat.pdf. This article is absolutely recommended reading because it tries to
trace back the very first recorded scatter plots and the first time a chart was called
a scatter plot and very deftly delineates the difference between a scatter plot and
a time series (in other words, all time series are scatter plots with time as an axis
while not all scatter plots are time series!).

https://doi.org/10.1007/978-1-4842-7202-2_8#DOI
http://www.datavis.ca/papers/friendly-scat.pdf
http://www.datavis.ca/papers/friendly-scat.pdf

220

 Finding Relationships in Data
The pattern, or lack of a pattern, that the points form on a scatter plot indicates the

relationship. At a very high level, relationships can be

• Positive correlation, in which one variable increases as the other

increases. This is demonstrated by the dots forming a line trending

diagonally upward from left to right (see Figure 8-1).

• Negative correlation, in which one variable increases as the other

decreases. This is demonstrated by the dots forming a line trending

downward from left to right (see Figure 8-2).

Figure 8-1. Scatter plot showing positive correlation between total phones in
North America and Europe

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

221

• No correlation, demonstrated (or not) by a scatter plot that has no

discernible trend line (see Figure 8-3).

Figure 8-2. Scatter plot showing negative correlation between body weight and
time passing (for a person on a diet)

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

222

Of course, simply identifying correlation between two data points or data sets does

not imply that there is direct cause in the relationship—hence the convention that

correlation does not imply causation. For example, see the negative correlation chart

in Figure 8-2. If we were to assume direct causation between the two axes—weight and

number of days—we would be assuming that the passing of time caused body weight to

decrease.

Although scatter plots are great for analyzing the relationship between two sets of

data, there is a related pattern that can be used to introduce a third set of data as well.

This visualization is called a bubble chart, and it uses the radius of the points in a scatter

plot to expose the third dimension of data.

Figure 8-3. Scatter plot showing no correlation between number of accidental
deaths in the United States over years

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

223

See Figure 8-4 for a bubble chart that shows the correlation in length of tooth growth

in guinea pigs and doses of vitamin C administered. The third data point is the method

of delivery: either by vitamin supplement or by orange juice. It is added as the radius of

each point in the graphic; the larger circle is the vitamin supplement, and the smaller

circle is orange juice.

For our purposes in this chapter, we will use scatter plots and bubble charts to look

at the implied relationship that team velocity has with our other areas of focus, in effect

doing correlation analysis on team dynamics. We will compare things like team size and

velocity, velocity and production incidents, and so on.

Figure 8-4. Correlation of tooth growth and doses of vitamin C in guinea pigs,
both by vitamin supplement and by orange juice

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

224

 Introductory Concepts of Agile Development
Let’s start by introducing some preliminary concepts of Agile development. If you are

already versed in Agile, this section will be a bit of a review. There are many flavors of

Agile development, but the high-level concepts that most have in common are the ideas

of time boxing a body of work. Time boxing enables the team to focus on one thing and

finish it, allowing the stakeholders to quickly give feedback on what was completed.

This short feedback loop allows for teams and stakeholders to pivot, or react and change

direction as requirements and even industries change.

This span of time that the team works on the body of work—whether it is one

week, three weeks, or what have you—is called a sprint. At the end of a sprint, the team

doing the work should have releasable code, though releasing after each sprint is not a

requirement.

Sprints begin with a planning session in which teams define the body of work,

and sprints end with a review session in which the team goes over the body of work

completed. Periodically during a sprint, the team grooms new work to complete; it

defines the work in user stories that list acceptance criteria. It is these user stories that

get prioritized and committed to in the planning sessions held at the beginning of each

sprint.

See Figure 8-5 for a high-level workflow of this process.

User stories have story points associated with them. Story points are estimates of

the level of complexity for the story and are usually a numeric value. As teams complete

sprints, they begin to form a consistent velocity. Velocity is the average amount of story

points that a team will complete in a sprint.

Velocity is important because you use it to estimate how much your team can

complete at the start of each sprint and to project out how much of your backlog of work

the team may be able to complete from your roadmap over the course of the year.

Figure 8-5. High-level workflow for Agile development

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

225

There are a number of tools available to manage Agile projects, such as Rally (www.

rallydev.com/) or Greenhopper from Atlassian (www.atlassian.com/software/

greenhopper/overview), the same company that makes Jira and Confluence. Whatever

tool you use should provide the ability to export your data, including user point counts

for each sprint.

 Correlation Analysis
To begin the analysis, let’s export a totaled sum of story points for each sprint along with

the team name. We should compile all these data points into a single file that we will

name teamvelocity.txt. Our file should look something like the following, which shows

data for the 12.1 and 12.2 sprints for the teams named Red and Gold (arbitrary names for

teams that are working on the same product just with different bodies of work):

Sprint,TotalPoints,Team

12.1,25,Gold

12.1,63,Red

12.2,54,Red

...

Let’s add an additional column in there to represent the total team members on each

team for each sprint. The data should now look like so:

Sprint,TotalPoints,TotalDevs,Team

12.1,25,6,Gold

12.1,63,10,Red

12.2,54,9,Red

...

We have also made this sample data set available, with more points, here: https://

jonwestfall.com/data/teamvelocity.txt.

Excellent! Let’s now read this into R, changing the path in the first line to be where

you have placed it:

tvFile <- "/Applications/MAMP/htdocs/teamvelocity.txt"

teamvelocity <- read.table(tvFile, sep=",", header=TRUE)

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

http://www.rallydev.com/
http://www.rallydev.com/
http://www.atlassian.com/software/greenhopper/overview
http://www.atlassian.com/software/greenhopper/overview
https://jonwestfall.com/data/teamvelocity.txt
https://jonwestfall.com/data/teamvelocity.txt

226

 Creating a Scatter Plot
Now create a scatter plot using the plot() function to compare the total points that the

teams completed in each sprint against how many members were on the team for each

sprint. We pass teamvelocity$TotalPoints and teamvelocity$TotalDevs as the first

two parameters, set the type to p, and give meaningful labels for the axes:

plot(teamvelocity$TotalPoints,teamvelocity$TotalDevs, type="p", ylab="Team

Members", xlab="Velocity", bg="#CCCCCC", pch=21)

This creates the scatter plot that we can see in Figure 8-6; we can see that as we

add more members to a team, the number of story points that they can complete in an

iteration, or sprint, also increases.

Figure 8-6. Correlation of team velocity and total team members

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

227

 Creating a Bubble Chart
If we want a greater insight into the data that we have so far, for example, to show which

points belong to which team, we could visualize that information with a bubble chart.

We can create bubble charts using the symbols() function. We pass in TotalPoints and

TotalDevs into symbols(), just as we did for plot(), but we also pass in the Team column

into a parameter named circles. This specifies the radius of the circle to draw on the chart.

Because for our example Team is a string, R converts it to a factor. We also set the color of the

circle with the bg parameter and the stroke color of the circle with the fg parameter.

symbols(teamvelocity$TotalPoints, teamvelocity$TotalDevs, circles=as.

factor(teamvelocity$Team), inches=0.35, fg="#000000", bg="#CCCCCC",

ylab="Team Members", xlab="Velocity")

The previous R code should produce a bubble chart that looks like Figure 8-7.

Figure 8-7. Correlation of team velocity, total team members, with size of bubble
indicating team

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

228

 Visualizing Bugs
The bubble chart shown in Figure 8-7 is of limited use, mainly because the team

breakdown is not really a relevant data point. Let’s take the teamvelocity.txt file and

begin to layer in more information. We already discussed tracking bug data back in

Chapter 6; now let’s use our bug-tracking software and add in two new bug-related data

points: the total bugs in each team’s backlog at the end of each sprint and how many

bugs were opened within each sprint. We’ll name the columns for these new data points

BugBacklog and BugsOpened, respectively.

The updated file should look something like this:

Sprint,TotalPoints,TotalDevs,Team,BugBacklog,BugsOpened

12.1,25,6,Gold,125,10

12.2,42,8,Gold,135,30

12.3,45,8,Gold,150,25

Let’s next create a scatter plot with this new data. We’ll first compare velocity against

bugs opened during each iteration:

plot(teamvelocity$TotalPoints,teamvelocity$BugsOpened, type="p",

xlab="Velocity", ylab="Bugs Opened During Sprint", bg="#CCCCCC", pch=21)

This creates the scatter plot shown in Figure 8-8.

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

229

Now this is very interesting. There is a positive correlation between having more

people on a team and getting more done (or at least getting more complex work done),

and the more story points that are completed, the more bugs are generated. So an

increase in complexity correlates to an increase in the number of bugs created in a given

sprint. At least that seems to be implied by my data.

Let’s reflect this new data point in the existing bubble chart; instead of sizing circles

by team, we size them by bugs opened:

symbols(teamvelocity$TotalPoints, teamvelocity$TotalDevs, circles=

teamvelocity$BugsOpened, inches=0.35, fg="#000000", bg="#CCCCCC",

ylab="Team Members", xlab="Velocity", main = "Velocity by Team Size by Bugs

Opened")

Figure 8-8. Correlation of team velocity and bugs opened

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

230

This code produces the bubble chart shown in Figure 8-9; you see that the sizing of

the bubbles follows the existing pattern of positive correlation, in that the bubbles get

larger as both the number of team members and the team velocity increases.

Let’s next create a scatter plot to look at the total bug backlog after each sprint:

plot(teamvelocity$TotalPoints,teamvelocity$BugBacklog, type="p",

xlab="Velocity", ylab="Total Bug Backlog", bg="#CCCCCC", pch=21)

This code produces the chart shown in Figure 8-10.

Figure 8-9. Correlation of team velocity and team size, where circle size indicates
bugs opened

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

231

This figure shows that no correlation exists. This could be because of any number

of reasons: maybe the team has been fixing bugs during the sprint, or maybe they are

closing all the bugs opened during the course of the iteration. Determining the root

cause is beyond the scope of the scatter plot, but we can tell that while the bugs being

opened and the level of complexity increases, the total bug backlog does not increase.

Figure 8-10. Correlation of team velocity by total bug backlog

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

232

 Visualizing Production Incidents
Let’s next layer in another data point into the file; we’ll add a column for production

incidents opened against the work done during the sprint. To be very specific, when a

body of work in a sprint is completed, it is released to production, and a release number

is generally associated with that release. This last data point we discuss is concerned

with tracking issues in production against the release for a given iteration. Not issues that

came in during the iteration; issues that came in once the work done in the iteration was

pushed to production.

Now let’s add in the last column, named ProductionIncidents:

Sprint,TotalPoints,TotalDevs,Team,BugBacklog,BugsOpened,ProductionIncidents

12.1,25,6,Gold,125,10,1

12.2,42,8,Gold,135,30,3

12.3,45,8,Gold,150,25,2

Great! Let’s next create a new bubble chart with this data, comparing total story

points completed, bugs opened each iteration, and production incidents per release:

symbols(teamvelocity$TotalPoints, teamvelocity$BugsOpened, circles=team

velocity$ProductionIncidents, inches=0.35, fg="#000000", bg="#CCCCCC",

ylab="Bugs Opened", xlab="Velocity", main = "Velocity by Bugs Opened by

Production Incidents Opened")

This code creates the chart shown in Figure 8-11.

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

233

From this chart, you can see that, at least according to our sample data, there exists a

positive correlation between total story points completed, bugs opened, and production

incidents opened for a given sprint.

Finally, now that all the data is layered into the flat file, we can create a scatter plot

matrix. This is a matrix of all the columns compared with each other with scatter plots.

We can use the scatter plot matrix to look at all the data at once and quickly pick out any

correlation patterns that may exist in the data set. We can create a scatter plot matrix

with just the plot() function or with the pairs() function in the graphics package:

plot(teamvelocity)

pairs(teamvelocity)

Figure 8-11. Correlation of team velocity and bugs opened, where the size of the
circle indicates the number of production incidents

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

234

Either one produces the chart shown in Figure 8-12.

In Figure 8-12, each row represents one of the columns in the data frame, and

each scatter plot represents the intersection of those columns. When you scan over

each scatter plot in the matrix, you can clearly see the correlation patterns in the

combinations already covered this chapter. While an effective visualization, by looking at

so many variables at the same time, the eye can easily get fatigued. It’s important to think

Figure 8-12. Scatter plot matrix of our complete data set

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

235

about how just because you can put everything in one figure, you might not want to. You

may consider subsetting your data to just certain columns of interest, making a figure

like this easier to walk through.

 Interactive Scatter Plots in D3
So far in this chapter, we’ve been creating different scatter plots to represent the data

combinations that we wanted to look at. But what if we want to create a scatter plot that

allows us to select the data points on which the axes were based? With D3, we can do just

that!

 Adding the Base HTML and JavaScript
Let’s start with the base HTML structure that has d3.js included as well as the base CSS:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <title></title>

<style>

body {

 font: 15px sans-serif;

}

.axis path{

 fill: none;

 stroke: #000;

 shape-rendering: crispEdges;

}

.dot {

 stroke: #000;

}

</style>

</head>

<body>

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

236

<script src="d3.v3.js"></script>

</body>

</html>

Let’s next add in the script tag to hold the chart. Just like the previous D3 examples,

include the starting variables, margin, x and y range objects, and x- and y-axis objects:

<script>

var margin = {top: 20, right: 20, bottom: 30, left: 40},

 width = 960 - margin.left - margin.right,

 height = 500 - margin.top - margin.bottom;

var x = d3.scale.linear()

 .range([0, width]);

var y = d3.scale.linear()

 .range([height, 0]);

var xAxis = d3.svg.axis()

 .scale(x)

 .orient("bottom");

var yAxis = d3.svg.axis()

 .scale(y)

 .orient("left");

</script>

Let’s also create the SVG tag on the page as in the previous examples:

var svg = d3.select("body").append("svg")

 .attr("width", width + margin.left + margin.right)

 .attr("height", height + margin.top + margin.bottom)

 .append("g")

 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

 Loading the Data
Now we need to load in the data using the d3.csv() function. In all previous D3

examples, most of the work was done in the scope of the callback function, but for

this example, we need to expose our functionality publicly so we can change the data

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

237

points via form select elements. Yet we still need to drive the initial functionality from

the callback function because that’s when we will have our data, so we will set up our

callback function to call stubbed out public functions.

We set a public variable that we call chartData to the data returned from the flat file

and call two functions called removeDots() and setChartDots():

d3.csv("teamvelocity.txt", function(error, data) {

 chartData = data;

 removeDots()

 setChartDots("TotalDevs", "TotalPoints")

});

Notice that we passed in "TotalDevs" and "TotalPoints" to the setChartDots()

function. This is to prime the pump because they will be the initial data points we show

when the page loads.

 Adding Interactive Functionality
Now we need to actually create the things we stubbed out. First, let’s create the variable

chartData at the root of the script tag where we set the other variables:

var margin = {top: 20, right: 20, bottom: 30, left: 40},

 width = 960 - margin.left - margin.right,

 height = 500 - margin.top - margin.bottom,

 chartData;

Next, we create the removeDots() function, which selects any circles or axes on the

page and removes them:

function removeDots(){

 svg.selectAll("circle")

 .transition()

 .duration(0)

 .remove()

 svg.selectAll(".axis")

 .transition()

 .duration(0)

 .remove()

}

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

238

And, finally, we create the setChartDots() functionality. The function accepts

two parameters: xval and yval. Because we want to make sure that the D3 transitions

are finished running and they have a 250-millisecond default runtime, even when we

set the duration to 0, we will wrap the contents of the function in a setTimeout() call,

so we wait 300 milliseconds before starting to draw our chart. If we don’t do this, we

could enter into a race condition in which we are drawing to screen as the transition is

removing from the screen.

function setChartDots(xval, yval){

 setTimeout(function() {

 }, 300);

 }

Within the function, we set the domains of the x and y scale objects using the xval

and yval parameters. These parameters correspond to the column names of the data

points that we will be charting:

x.domain(d3.extent(chartData, function(d) { return d[xval];}));

y.domain(d3.extent(chartData, function(d) { return d[yval];}));

Next, we draw the circles to the screen, using the global chartData variable to feed it

and the passed-in columnal data as the x and y coordinates of the circles. We also grow

the axes in this function, so that we redraw the values each time an axis is changed.

svg.selectAll(".dot")

 .data(chartData)

 .enter().append("circle")

 .attr("class", "dot")

 .attr("r", 3)

 .attr("cx", function(d) { return x(d[xval]);})

 .attr("cy", function(d) { return y(d[yval]);})

 .style("fill", "#CCCCCC");

svg.append("g")

 .attr("class", "axis")

 .attr("transform", "translate(0," + height + ")")

 .call(xAxis)

 svg.append("g")

 .attr("class", "axis")

 .call(yAxis)

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

239

The complete function should look like the following:

function setChartDots(xval, yval){

 setTimeout(function() {

 x.domain(d3.extent(chartData, function(d) { return d[xval];}));

 y.domain(d3.extent(chartData, function(d) { return d[yval];}));

 svg.selectAll(".dot")

 .data(chartData)

 .enter().append("circle")

 .attr("class", "dot")

 .attr("r", 3)

 .attr("cx", function(d) { return x(d[xval]);})

 .attr("cy", function(d) { return y(d[yval]);})

 .style("fill", "#CCCCCC");

 svg.append("g")

 .attr("class", "axis")

 .attr("transform", "translate(0," + height + ")")

 .call(xAxis)

 svg.append("g")

 .attr("class", "axis")

 .call(yAxis)

 }, 300);

}

Excellent!

 Adding Form Fields
Let’s next add in the form fields. We’ll add two select elements, where each option

corresponds to a column in the flat file. The elements call a JavaScript function,

getFormData(), that we will define shortly:

<form>

 Y-Axis:

 <select id="yval" onChange="getFormData()">

 <option value="TotalPoints">Total Points</option>

 <option value="TotalDevs">Total Devs</option>

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

240

 <option value="Team">Team</option>

 <option value="BugsOpened">Bugs Opened</option>

 <option value="ProductionIncidents">Production Incidents

</option>

 </select>

 X-Axis:

 <select id="xval" onChange="getFormData()">

 <option value="TotalPoints">Total Points</option>

 <option value="TotalDevs">Total Devs</option>

 <option value="Team">Team</option>

 <option value="BugsOpened">Bugs Opened</option>

 <option value="ProductionIncidents">Production Incidents

</option>

 </select>

</form>

 Retrieving Form Data
The last bit of functionality left is to code the getFormData() function. This function

pulls out the selected options from both select elements and use those values to pass in

to setChartDots()—after calling removeDots(), of course.

function getFormData(){

 var xEl = document.getElementById("xval")

 var yEl = document.getElementById("yval")

 var x = xEl.options[xEl.selectedIndex].value

 var y = yEl.options[yEl.selectedIndex].value

 removeDots()

 setChartDots(x,y)

}

Great!

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

241

 Using the Visualization
The complete source code should look like the following:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <title></title>

<style>

body {

 font: 10px sans-serif;

}

.axis path,

.axis line {

 fill: none;

 stroke: #000;

 shape-rendering: crispEdges;

}

.dot {

 stroke: #000;

}

</style>

</head>

<body>

 <form>

 Y-Axis:

 <select id="yval" onChange="getFormData()">

 <option value="TotalPoints">Total Points</option>

 <option value="TotalDevs">Total Devs</option>

 <option value="Team">Team</option>

 <option value="BugsOpened">Bugs Opened</option>

 <option value="ProductionIncidents">Production

Incidents</option>

 </select>

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

242

 X-Axis:

 <select id="xval" onChange="getFormData()">

 <option value="TotalPoints">Total Points</option>

 <option value="TotalDevs">Total Devs</option>

 <option value="Team">Team</option>

 <option value="BugsOpened">Bugs Opened</option>

 <option value="ProductionIncidents">Production

Incidents</option>

 </select>

 </form>

<script src="d3.v3.js"></script>

<script>

var margin = {top: 20, right: 20, bottom: 30, left: 40},

 width = 960 - margin.left - margin.right,

 height = 500 - margin.top - margin.bottom,

 chartData;

var x = d3.scale.linear()

 .range([0, width]);

var y = d3.scale.linear()

 .range([height, 0]);

var xAxis = d3.svg.axis()

 .scale(x)

 .orient("bottom");

var yAxis = d3.svg.axis()

 .scale(y)

 .orient("left");

var svg = d3.select("body").append("svg")

 .attr("width", width + margin.left + margin.right)

 .attr("height", height + margin.top + margin.bottom)

 .append("g")

 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

 svg.append("g")

 .attr("class", "x axis")

 .attr("transform", "translate(0," + height + ")")

 .call(xAxis)

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

243

 svg.append("g")

 .attr("class", "y axis")

 .call(yAxis)

 function getFormData(){

 var xEl = document.getElementById("xval")

 var yEl = document.getElementById("yval")

 var x = xEl.options[xEl.selectedIndex].value

 var y = yEl.options[yEl.selectedIndex].value

 removeDots()

 setChartDots(x,y)

 }

 function removeDots(){

 svg.selectAll("circle")

 .transition()

 .duration(0)

 .remove()

 svg.selectAll(".axis")

 .transition()

 .duration(0)

 .remove()

 }

 function setChartDots(xval, yval){

 setTimeout(function() {

 x.domain(d3.extent(chartData, function(d) { return d[xval];}));

 y.domain(d3.extent(chartData, function(d) { return d[yval];}));

 svg.selectAll(".dot")

 .data(chartData)

 .enter().append("circle")

 .attr("class", "dot")

 .attr("r", 3)

 .attr("cx", function(d) { return x(d[xval]);})

 .attr("cy", function(d) { return y(d[yval]);})

 .style("fill", "#CCCCCC");

 svg.append("g")

 .attr("class", "axis")

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

244

 .attr("transform", "translate(0," + height + ")")

 .call(xAxis)

 svg.append("g")

 .attr("class", "axis")

 .call(yAxis)

 }, 300);

 }

d3.csv("teamvelocity.txt", function(error, data) {

 chartData = data;

 removeDots()

 setChartDots("TotalDevs", "TotalPoints")

});

</script>

</body>

</html>

And it should create the interactive visualization shown in Figure 8-13.

Figure 8-13. Interactive scatter plot with D3

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

245

 Summary
This chapter looked at correlations between the speed at which a team moves and the

opening of bugs and production issues. There is naturally a positive correlation between

these data points: when we make new things, we create new opportunities for those new

things and existing things to break.

Of course, that doesn’t mean that we should stop making new things, even if for

some reason our business units and our very industries would allow it. It means that we

need to find balance between making new things and nurturing and maintaining the

things that we already have. This is exactly what we will look at in the next chapter.

ChapTer 8 CorrelaTion analysis wiTh sCaTTer ploTs

247
© Tom Barker, Jon Westfall 2022
T. Barker and J. Westfall, Pro Data Visualization Using R and JavaScript,
https://doi.org/10.1007/978-1-4842-7202-2_9

CHAPTER 9

Visualizing the Balance
of Delivery and Quality
with Parallel Coordinates
The last chapter looked at using scatter plots to identify relationships between sets of

data. It discussed the different types of relationships that could exist between data sets,

such as positive and negative correlation. We couched this idea in the premise of team

dynamics: Do you see any correlation between the amount of people on a team and the

amount of work that the team can complete, or between the amount of work completed

and the number of defects generated?

In this chapter, we tie together the key concepts that we have been talking about:

visualizing, team feature work, defects, and production incidents. We will tie them

together using a data visualization called parallel coordinates to show the balance

between these efforts.

 What Are Parallel Coordinate Charts?
Parallel coordinate charts are a visualization that consists of N amount of vertical axes,

each representing a unique data set, with lines drawn across the axes. The lines show

the relationship between the axes, much like scatter plots, and the patterns that the

lines form indicate the relationship. We can also gather details about the relationships

between the axes when we see a clustering of lines. Let’s take a look at this using the

chart in Figure 9-1 as an example.

https://doi.org/10.1007/978-1-4842-7202-2_9#DOI

248

I constructed the chart in Figure 9-1 from the data set Seatbelts that comes built

into R. To see a breakdown of the data set, type ?Seatbelts at the R command line. I

extracted a subset of the columns available to better highlight the relationships in the

data:

cardeaths <- data.frame(Seatbelts[,1], Seatbelts[,5], Seatbelts[,6],

Seatbelts[,8])

colnames(cardeaths) <- c("DriversKilled", "DistanceDriven", "PriceofGas",

"SeatbeltLaw")

The data set represents the number of drivers killed in car accidents in Great Britain

before and after it became compulsory to wear seat belts. The axes represent the number

of drivers killed, the distance driven, the cost of gas at the time, and whether there was a

seat belt law in place.

Figure 9-1. Parallel coordinates for Seatbelts data set

Chapter 9 Visualizing the BalanCe of DeliVery anD Quality with parallel CoorDinates

249

There are a number of useful ways to look at parallel coordinates. If we look at the

lines between a single pair of axes, we can see the relationships between those data sets.

For example, if we look at the relationship between the price of gas and the seat belt law,

we can see that the price of gas is constrained pretty tightly for when the seat belt law

was in place, but covered a large range of prices for when the seat belt law was not in

place (i.e., a lot of disparate lines converge on the point that represents the time before

the law, and a narrow band of lines converge on the time after the law was passed). This

relationship could imply many different things, but because I know the data, I know

it’s because we just have a much smaller sample size for deaths after the law was put in

place: 14 years’ worth of data before the seat belt law, but only 2 years’ worth of data after

the seat belt law.

We can also trace lines across all the axes to see how each of the axes relates. This

is difficult to do with all the lines of the same color, but when we change the color and

shading of the lines, we can more easily see the patterns across the chart. Let’s take the

existing chart and assign colors to the lines (the results are displayed in Figure 9-2; also,

you’ll need to install the MASS package if you don’t have it already):

library(MASS)

parcoord(cardeaths, col=rainbow(length(cardeaths[,1])), var.label=TRUE)

Chapter 9 Visualizing the BalanCe of DeliVery anD Quality with parallel CoorDinates

250

Note you need to import the Mass library to use the parcoord() function.

Figure 9-2 begins to show the patterns that exist in the data. The lines that have the

lowest number of deaths also have the most distances driven and mainly fall into the

point in time after the seat belt law was enacted. Again, note that we do have a much

smaller sample size available for post–seat belt law than we do for pre–seat belt law, but

you can see how it becomes useful and telling to be able to trace the interconnectedness

of these data points.

Figure 9-2. Parallel coordinates for Seatbelts data set, with each line a different
shade of gray

Chapter 9 Visualizing the BalanCe of DeliVery anD Quality with parallel CoorDinates

251

 History of Parallel Coordinate Plots
The idea of using parallel coordinates on vertical axes was invented in 1885 by Maurice

d’Ocagne when he created the nomograph and the field of nomography. Nomographs

are tools to calculate values across mathematical rules. The classic example of a

nomograph still in use today is the line on a thermometer that shows values in both

Fahrenheit and Celsius. Or think of rulers that show values in inches on one side and

centimeters on the other.

Note ron Doerfler has written an extensive thesis on nomography available
here: http://myreckonings.com/wordpress/2008/01/09/the-art-
of-nomography-i-geometric-design/. Doerfler also hosts a site called
modern nomograms (www.myreckonings.com/modernnomograms/) that
“offers eye-catching and useful graphical calculators uniquely designed for today's
applications.”

You can see examples of modern nomograms, courtesy of Ron Doerfler, in Figures 9-3

and 9-4.

Chapter 9 Visualizing the BalanCe of DeliVery anD Quality with parallel CoorDinates

http://myreckonings.com/wordpress/2008/01/09/the-art-of-nomography-i-geometric-design/
http://myreckonings.com/wordpress/2008/01/09/the-art-of-nomography-i-geometric-design/
http://www.myreckonings.com/modernnomograms/

252

Figure 9-3. Nomogram demonstrating the conversion of values between the
functions S, P, R, and T, the basis of the sequential probability ratio test

Chapter 9 Visualizing the BalanCe of DeliVery anD Quality with parallel CoorDinates

253

Note the term parallel coordinates and the concept that it represents were
popularized and rediscovered by alfred inselberg while studying at the university
of illinois. Dr. inselberg is currently a professor at tel aviv university and a senior
fellow at the san Diego supercomputing Center. Dr. inselberg has also published
a book on the subject, Parallel Coordinates: Visual Multidimensional Geometry and
Its Applications (springer, 2009). he has also published a dissertation on how to
effectively read and use parallel coordinates, entitled “Multidimensional Detective,”
available from the ieee.

Figure 9-4. Curved scale nomogram, courtesy of Ron Doerfler, Leif Roschier, and
Joe Marasco

Chapter 9 Visualizing the BalanCe of DeliVery anD Quality with parallel CoorDinates

254

 Finding Balance
We understand that parallel coordinates are used to visualize the relationship between

multiple variables, but how does that apply to what we have been talking about so

far in this book? So far, we discussed quantifying and visualizing the defect backlog,

the sources of the production incidents, and even the amount of work that our teams

commit to. Arguably, balancing these aspects of product development can be one of the

most challenging activities that a team does.

With each iteration, either formal or informal, team members have to decide how

much effort they should put toward each of these concerns: working on new features,

fixing bugs on existing features, and addressing production incidents from direct

feedback from users. And these are just a sampling of the nuances that every product

team must juggle; they also may have to factor in time to spend on technical debt or

updating infrastructure.

We can use parallel coordinates to visualize this balance, both for documentation

and as a tool for analysis when starting new sprints.

 Creating a Parallel Coordinate Chart
There are several different approaches to creating a parallel coordinate chart. Using the

data from the previous chapter, we could look at the running totals per iteration. Recall

that the data was a total of points committed to per iteration, as well as a snapshot of

how many bugs and production incidents were in each team’s backlog, how many new

bugs were opened during the iteration, and how many members there were on the team.

The data looked much like this:

 Sprint TotalPoints TotalDevs Team BugBacklog BugsOpened ProductionIncidents

 1 12.10 25 6 Gold 125 10 1

 2 12.20 42 8 Gold 135 30 3

 3 12.30 45 8 Gold 150 25 2

 4 12.40 43 8 Gold 149 23 3

 5 12.50 32 6 Gold 155 24 1

 6 12.60 43 8 Gold 140 22 4

 7 12.70 35 7 Gold 132 9 1

...

Chapter 9 Visualizing the BalanCe of DeliVery anD Quality with parallel CoorDinates

255

To make use of this data, we can read it in to R, just as we did in the last chapter:

tvFile <- "/Applications/MAMP/htdocs/teamvelocity.txt"

teamvelocity <- read.table(tvFile, sep=",", header=TRUE)

We then can create a new data frame with all the columns from the teamvelocity

variable except the Team column. That column is a string, and the R parcoord() function,

which we use in this example, throws an error if we include strings in the object that we

pass in to it. Team information wouldn’t make sense in this context, either. The lines that

will be drawn in the chart will be representative of our teams:

t<- data.frame(teamvelocity$Sprint, teamvelocity$TotalPoints,

teamvelocity$TotalDevs, teamvelocity$BugBacklog, teamvelocity$BugsOpened,

teamvelocity$ProductionIncidents)

colnames(t) <- c("sprint", "points", "devs", "total bugs", "new bugs",

"prod incidents")

We pass the new object into the parcoord() function. We also pass the rainbow()

function into the color parameter, as well as set the var.label parameter to true, to

make the upper and lower boundaries of each axis visible on the chart:

parcoord(t, col=rainbow(length(t[,1])), var.label=TRUE)

Chapter 9 Visualizing the BalanCe of DeliVery anD Quality with parallel CoorDinates

256

This code produces the visualization shown in Figure 9-5.

Figure 9-5 presents some interesting stories for us. We can see that some teams in

our data set create more bugs as they take on more points’ worth of work. Other teams

have a large bug backlog while not creating a large number of new bugs during each

iteration, which implies that they are not closing the bugs that they do open. Some teams

are more consistent than others. All contain insights that the teams can use for reflection

and continual improvement. But ultimately this chart is reactive and talks around the

main issues. It tells us what the effects of each sprint are on our respective backlogs, both

bugs and production incidents. It also tells us how many bugs were opened during each

sprint.

Figure 9-5. Parallel coordinate chart of different aspects of overall organizational
metrics, including points committed to per iteration, total developers by team, total
bug backlog, new bugs open, and production incidents

Chapter 9 Visualizing the BalanCe of DeliVery anD Quality with parallel CoorDinates

257

What the figure doesn’t show is the amount of effort spent working against each

backlog. To show that, we need to do a bit of prep work.

 Adding in Effort
Past chapters I mentioned Greenhopper and Rally as ways to plan iterations, prioritize

backlogs, and track progress on user stories. No matter the product you choose, it should

provide some way to categorize or tag your user stories with metadata. Some very simple

ways to accomplish this categorization without needing your software to support it

include these:

• Put tagging in the title of each user story (see Figure 9-6 for an

example of what this could look like in Rally). With this method, you

need to sum the level of effort for each category, either manually or

programmatically.

• Nest subprojects for each delineation of effort.

However you go about creating these buckets, you should have a way to track the

amount of effort spent during each sprint for your categories. To visualize this, just

export it from your favorite tool into a flat file that resembles the structure shown here:

iteration,defect,prodincidents,features,techdebt,innovation

13.1,6,3,13,2,1

13.2,8,1,7,2,1

13.3,10,1,9,3,2

Figure 9-6. User stories tagged by category, Defect, Feature, or Prod Incident
(courtesy of Rally)

Chapter 9 Visualizing the BalanCe of DeliVery anD Quality with parallel CoorDinates

258

13.5,9,2,18,10,3

13.6,7,5,19,8,3

13.7,9,5,21,12,3

13.8,6,7,11,14,3

13.9,8,3,16,18,3

13.10,7,4,15,5,3

To begin using this data, we need to import the contents of the flat file into R. We

store the data in a variable named teamEffort and pass teamEffort into the parcoord()

function:

teFile <- "/Applications/MAMP/htdocs/teamEffort.txt"

teamEffort <- read.table(teFile, sep=",", header=TRUE)

parcoord(teamEffort, col=rainbow(length(teamEffort[,1])), var.label=TRUE,

main="Level of Effort Spent")

This code produces the chart shown in Figure 9-7.

Chapter 9 Visualizing the BalanCe of DeliVery anD Quality with parallel CoorDinates

259

This chart is less about seeing relationships implied by data and more about seeing

explicit levels of effort committed to each sprint. In a vacuum, these data points are

meaningless, but when you look at both charts and compare the total bug backlog and

total production incidents, compared with the level of effort spent addressing either, you

begin to see blind spots that the team would need to address. Blind spots might be where

teams that have high bug backlogs or production incident counts are not spending

enough effort to address those backlogs.

Figure 9-7. Parallel coordinate plot of level of effort spent toward each
initiative

Chapter 9 Visualizing the BalanCe of DeliVery anD Quality with parallel CoorDinates

260

 Brushing Parallel Coordinate Charts with D3
The trick to reading dense parallel coordinate plots is to use a technique called brushing.

Brushing fades the color or opacity of all the lines on the chart, except for the lines you

want to trace across the axes. We can achieve this level of interactivity using D3.

 Creating the Base Structure
Let’s start by creating a new HTML file using our base HTML skeletal structure:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <title></title>

</head>

<body>

<script src="d3.v3.js"></script>

</body>

</html>

We then create a new script tag to hold the JavaScript for the chart. In this tag, we

start by creating the variables needed to set the height and width of the chart, an object

to hold the margin values, an array of axes column names, and the scale object for the x

object.

We also create variables to reference the D3 SVG line object, a reference to the D3

axis, and a variable named foreground to hold the groupings of all the paths that will be

the lines drawn between axes in the chart:

<script>

var margin = {top: 80, right: 160, bottom: 200, left: 160},

 width = 1280 - margin.left - margin.right,

 height = 800 - margin.top - margin.bottom,

 cols =

["iteration","defect","prodincidents","features","techdebt","innovation"]

var x = d3.scale.ordinal().domain(cols).rangePoints([0, width]),

 y = {};

Chapter 9 Visualizing the BalanCe of DeliVery anD Quality with parallel CoorDinates

261

var line = d3.svg.line(),

 axis = d3.svg.axis().orient("left"),

 foreground;

</script>

We draw the SVG element to the page and store it in a variable that we name svg:

var svg = d3.select("body").append("svg")

 .attr("width", width + margin.left + margin.right)

 .attr("height", height + margin.top + margin.bottom)

 .append("g")

 .attr("transform", "translate(" + margin.left + "," + margin.top +

")");

We use d3.csv to load in the teameffort.txt flat file:

d3.csv("teameffort.txt", function(error, data) {

}

So far, we’re following the same format as in previous chapters: lay out variables at

the top, create the SVG element, and load in the data; most of the data-dependent logic

happens in the anonymous function that fires when the data has been loaded.

For parallel coordinates, this process changes a bit right here because we need to

create y-axes for each column in our data.

 Creating a Y-Axis for Each Column
To create a y-axis for each column, we have to loop through the array that holds the

column names, convert the contents of each column to explicitly be numbers, create an

index in the y variable for each column, and create a D3 scale object for each column:

cols.forEach(function(d) {

 //convert to numbers

 data.forEach(function(p) { p[d] = +p[d]; });

 //create y scale for each column

 y[d] = d3.scale.linear()

 .domain(d3.extent(data, function(p) { return p[d]; }))

 .range([height, 0]);

});

Chapter 9 Visualizing the BalanCe of DeliVery anD Quality with parallel CoorDinates

262

 Drawing the Lines
We need to draw the lines that will traverse each axis, so we create an SVG grouping to

aggregate and hold all the lines. We assign the foreground class to the grouping (doing

so is important because we will handle the brushing of the lines via CSS):

foreground = svg.append("g")

 .attr("class", "foreground")

We append SVG paths to this grouping. We attach the data to the paths, set the color

of the paths to randomly generated colors, and stub out mouseover and mouseout event

handlers. We also set the d attribute of the paths to a function that we will create called

path().

We’ll come back to those event handlers in a minute.

foreground = svg.append("g")

 .attr("class", "foreground")

 .selectAll("path")

 .data(data)

 .enter().append("path")

 .attr("stroke", function(){return "#" + Math.floor(Math.random()*16777215).

toString(16);})

 .attr("d", path)

 .attr("width", 16)

 .on("mouseover", function(d){

 })

 .on("mouseout", function(d){

 })

Let’s flesh out the path() function. In this function, we accept a parameter named d,

which will be an index of the data variable. The function returns a mapping of the path

coordinates with the x and y scales.

function path(d) {

 return line(cols.map(function(p) { return [x(p), y[p](d[p])]; }));

}

Chapter 9 Visualizing the BalanCe of DeliVery anD Quality with parallel CoorDinates

263

The path() function returns data that looks much like the following—a

multidimensional array with each index and array consisting of two coordinate values:

[[0, 520], [192, 297.14285714285717], [384, 346.6666666666667], [576, 312],

[768, 491.1111111111111], [960, 520]]

 Fading the Lines
Let’s take a step back for a second. To handle the brushing, we need to create a style rule

to fade the opacity of the lines. So let’s return to the head section of the page and create a

style tag and some style rules.

We set path.fade as the selector and set the stroke-opacity to 4%. While we’re at it,

we also set body font styles and path styles.

<style>

body {

 font: 15px sans-serif;

 font-weight:normal;

}

path{

 fill: none;

 shape-rendering: geometricPrecision;

 stroke-width:1;

}

path.fade {

 stroke: #000;

 stroke-opacity: .04;

}

</style>

Let’s return to the stubbed out event handlers. D3 provides a function called

classed() that allows us to add classes to selections. In the mouseover handler, we

use the classed() function to apply the fade style that we just created to every path in

the foreground. It fades out each line. We’ll next target the current selection, using d3.

select(this) and classed() to turn off the fade styling.

Chapter 9 Visualizing the BalanCe of DeliVery anD Quality with parallel CoorDinates

264

In the mouseout handler, we turn off the fade style:

foreground = svg.append("g")

 .attr("class", "foreground")

 .selectAll("path")

 .data(data)

 .enter().append("path")

 .attr("stroke", function(){return "#" + Math.floor(Math.

random()*16777215).toString(16);})

 .attr("d", path)

 .attr("width", 16)

 .on("mouseover", function(d){

 foreground.classed("fade",true)

 d3.select(this).classed("fade", false)

 })

 .on("mouseout", function(d){

 foreground.classed("fade",false)

 })

 Creating the Axes
Finally, we need to create the axes:

var g = svg.selectAll(".column")

 .data(cols)

 .enter().append("svg:g")

 .attr("class", "column")

 .attr("stroke", "#000000")

 .attr("transform", function(d) { return "translate(" + x(d)

+ ")"; })

 // Add an axis and title.

 g.append("g")

 .attr("class", "axis")

 .each(function(d) { d3.select(this).call(axis.scale(y[d])); })

 .append("svg:text")

 .attr("text-anchor", "middle")

Chapter 9 Visualizing the BalanCe of DeliVery anD Quality with parallel CoorDinates

265

 .attr("y", -19)

 .text(String);

Our complete code is as follows:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <title></title>

<style>

body {

 font: 15px sans-serif;

 font-weight:normal;

}

path{

 fill: none;

 shape-rendering: geometricPrecision;

 stroke-width:1;

}

path.fade {

 stroke: #000;

 stroke-opacity: .04;

}

</style>

</head>

<body>

<script src="d3.v3.js"></script>

<script>

var margin = {top: 80, right: 160, bottom: 200, left: 160},

 width = 1280 - margin.left - margin.right,

 height = 800 - margin.top - margin.bottom,

 cols = ["iteration","defect","prodincidents","features",

"techdebt","innovation"]

var x = d3.scale.ordinal().domain(cols).rangePoints([0, width]),

 y = {};

Chapter 9 Visualizing the BalanCe of DeliVery anD Quality with parallel CoorDinates

266

var line = d3.svg.line(),

 axis = d3.svg.axis().orient("left"),

 foreground;

var svg = d3.select("body").append("svg")

 .attr("width", width + margin.left + margin.right)

 .attr("height", height + margin.top + margin.bottom)

 .append("g")

 .attr("transform", "translate(" + margin.left + "," +

margin.top + ")");

d3.csv("teameffort.txt", function(error, data) {

 cols.forEach(function(d) {

 //convert to numbers

 data.forEach(function(p) { p[d] = +p[d]; });

 y[d] = d3.scale.linear()

 .domain(d3.extent(data, function(p) { return p[d]; }))

 .range([height, 0]);

 });

 foreground = svg.append("g")

 .attr("class", "foreground")

 .selectAll("path")

 .data(data)

 .enter().append("path")

 .attr("stroke", function(){return "#" + Math.floor(Math.

random()*16777215).toString(16);})

 .attr("d", path)

 .attr("width", 16)

 .on("mouseover", function(d){

 foreground.classed("fade",true)

 d3.select(this).classed("fade", false)

 })

 .on("mouseout", function(d){

 foreground.classed("fade",false)

 })

Chapter 9 Visualizing the BalanCe of DeliVery anD Quality with parallel CoorDinates

267

 var g = svg.selectAll(".column")

 .data(cols)

 .enter().append("svg:g")

 .attr("class", "column")

 .attr("stroke", "#000000")

 .attr("transform", function(d) { return "translate(" + x(d)

+ ")"; })

 // Add an axis and title.

 g.append("g")

 .attr("class", "axis")

 .each(function(d) { d3.select(this).call(axis.scale(y[d]));

})

 .append("svg:text")

 .attr("text-anchor", "middle")

 .attr("y", -19)

 .text(String);

 function path(d) {

 return line(cols.map(function(p) { return [x(p), y[p]

(d[p])]; }));

 }

 });

</script>

</body>

</html>

Chapter 9 Visualizing the BalanCe of DeliVery anD Quality with parallel CoorDinates

268

This code produces the chart shown in Figure 9-8.

If we roll over any of the lines, we see the brushing effect shown in Figure 9-9, in

which the opacity of all the lines, except the one currently moused over, is scaled back.

Figure 9-8. Parallel coordinate chart created in D3

Figure 9-9. Parallel coordinate chart with interactive brushing

Chapter 9 Visualizing the BalanCe of DeliVery anD Quality with parallel CoorDinates

269

 Summary
This chapter looked at parallel coordinate charts. You got a taste of their history—how

they came about originally in the form of nomograms used to show value conversions.

You looked at their practical application in the context of visualizing how teams balance

the different aspects of product development in the course of an iteration.

Parallel coordinates are the last visualization type covered in this book, but it is far

from the last type of visualization out there. And this book is far from the last word on

the subject. Something that I tell my students at the end of each semester is that I hope

they will continue to use what they have learned in my class. Only by using the language

or subject that was covered, by continually playing with it, exploring it, and testing the

boundaries of it will students incorporate this new tool into their own skillset. Otherwise,

if they leave the class (or, in this case, close the book) and not think about the subject for

a good while, they will probably forget much of what we went over.

If you are a developer or technical leader, I hope that you read this book and were

inspired to begin tracking your own data. This was just a small sampling of things that

you can track. You can instrument your code to track performance metrics, as covered in

my book Pro JavaScript Performance: Monitoring and Visualization, or you can use tools

such as Splunk to create dashboards to visualize usage data and error rates. You can tap

right into the source code repository database to get such metrics as what times and days

of the week have the most commit activity to avoid scheduling meetings during those

times.

The point of all this data tracking is self-improvement—to establish baselines of

where you currently are and track progress toward where you want to be, to constantly

refine your craft, and excel at what you do.

Chapter 9 Visualizing the BalanCe of DeliVery anD Quality with parallel CoorDinates

271
© Tom Barker, Jon Westfall 2022
T. Barker and J. Westfall, Pro Data Visualization Using R and JavaScript,
https://doi.org/10.1007/978-1-4842-7202-2

Index

A
Access logs

Apache documentation, 122
data map, R

displaying regional data, 144–146
geographic data, 137, 139, 140
latitude/longitude, 141, 143

definition, 121
distributing visualization, 146, 147, 149
documentation, 122
parsing

control logic, 134–136
geolocation IP, 129–131
output fields, 132
parse log file, 125–128
process, 123
read, 124

aggregate() function, 199
Agile development, 224
Anonymous function, 58, 69, 100, 107,

108, 138, 144, 167
append() function, 98
Application programming

interface (API), 20, 90
apply() function, 57, 76, 144
as.Date() function, 155
as.matrix() function, 53
attr() function, 97, 100, 107
axis() function, 161

B
Bar chart, 186

bugs, 187
D3, 203
groups, 191, 192
horizontal, 204
plot data, 197, 199
production incidents, 201
stacked, 188, 191
standard, 186, 187

Bubble charts, 222, 223, 227–229
Bug-tracking software, 154, 178,

228, 229

C
Cascading Style Sheet (CSS), 90, 206
chartData variable, 238
Cholera map, 9, 10, 117
Cite sources, 32
classed() function, 263
colnames() function, 45
Comprehensive R Archive Network

(CRAN), 34, 35
Correlation analysis, 225

bubble chart, 227
scatter plot, 226

createPlaylist() function, 67
cumsum() function, 159

https://doi.org/10.1007/978-1-4842-7202-2#DOI

272

D, E
Data-Driven Documents (D3), 15, 16, 95
Data frames, 47, 49–51
Data maps, 6, 9, 117, 121
data() method, 99
Data types, 47

apply functions, 56, 57
data frame, 50, 51
functions, 59
lists, 54, 55
loop, 55, 56
matrices, 51, 54

Data visualization, 3, 14
analyze data, 24, 26–29
core steps, 20
ethics, 31
gather data, 20–23
history, 8, 14
identify a problem, 20
visualize data, 30

Data visualization, D3, 99
bar chart, creating, 103–109
binding data, 100–103
CSS, 90
definition, 87
history, 95
HTML, 88, 89, 114
JavaScript, 94
loading external data, 111–113
setting up project, 97
SVG, 91–93, 98

d3.csv function, 167, 205,
208, 210, 236

d3.layout.stack() function, 210
d3.nest() function, 168, 206
Document Object Model (DOM), 90

drawAxes() function, 208
d3.text() function, 111, 113
D3 transition, 213, 238

F
fromJSON() function, 25

G
Generic functions, 64, 210
getElementById() function, 94
getFormData() function, 240
getLocationbyIP() function, 129
GitHub, 195, 196
Google Trends, 4, 5, 7, 17, 18
Grouped bar charts, 191, 192
gsub() function, 138

H
Heroku, 193–195
Histograms, 5, 6
Horizontal bar chart, 204
HyperText Markup

Language (HTML), 78

I
Import data, 43, 44

column names, 46
header, 44
row identifiers, 45
string delimiter, 45

Information graphics, 3, 12, 14
Integrated development

environment (IDE), 76

Index

273

J, K
JavaScript, 85, 87, 89, 91, 94

L
las parameter, 200
Lexical scoping, 59
library() function, 42, 137
lines() function, 164

M
map() function, 55, 138, 139
match.map() function, 138
Matrices, 51, 54
matrix() function, 52, 53
methods() function, 65
mode() function, 47
Modern browser architecture, 88, 89
Modern revitalization, 12

N
Negative correlation, 220–222, 247
new() function, 69
Nomogram, 251–253, 269

O
order() function, 156, 200

P
pairs() function, 233
par() function, 200
Parallel coordinate chart, 247, 254, 256

adding effort, 257, 259
D3

axes, 264, 268
base structure, 260
draw lines, 262
fade lines, 263
interactive brushing, 268
Y-axis, 261

history, 251
parcoord() function, 255, 258
parseLogLine() function, 125, 128
parseLogs.php, 124
paste() function, 48
path() function, 262, 263
Pie charts, 11
plot() function, 66, 161, 164, 226
plot() generic function, 65
Positive correlation, 220, 229, 230
Production incidents, 193, 232, 233, 240

Q
quantile() function, 74

R
R

object-oriented programming
creating classes, 63
IUser interface, 64
S3 classes, 64–66
S4 classes, 68–70
statistical analysis, 70, 71, 73–76

Radiation Dose Chart, 12, 13
rainbow() function, 255
read() function, 43
removeDots() function, 237
R environment, 33

command line, 37
commands history, 38, 39

Index

274

console, 37
documentation, 39
home page, 34
installation on Mac, 36
packages, 40, 41

RStudio IDE
bottom-right pan, 78
definition, 76
R markdown, 78, 80–82
RPubs, 83–85

S
Scalable Vector Graphics (SVG), 91, 205
scale() function, 105
Scatter plot, D3

D3, 235
form data, 240
form fields, 239
functionality, 238
HTML/JavaScript, 235, 236
loading data, 236, 238
negative correlation, 221
no correlation, 222
relationship, 220
visualization, 241, 244

select() function, 97
setChartDots() function, 237
setClass() function, 68
setMethod() function, 69
setwd() function, 38
Sparklines, 14
Splunk, 15, 16, 269
Stacked bar charts, 188, 191, 202, 208, 213
substr() function, 48, 49

summary() function, 73, 75
symbols() function, 227

T
table() function, 157, 163, 202
Tabular data, 3
Team velocity, 231
Time series charts, 4
transitionVisualization() function, 207, 212

U
UseMethod() function, 68

V
Visualizing defects over time

bug-tracking software, 154
D3

adding interactivity, 175–180, 182
drawing page, 169, 170, 172–175
HTML skeletal structure, 166
reading data, 167, 168

data, 154
data analysis, R

bug count, 157, 159, 161, 162
examining bugs, 163–166

peers, 153

W, X, Y, Z
Wolfram|Alpha, 19
World Wide Web Consortium (W3C), 122
wrapper() function, 60
writeRLog() function, 133

R environment (cont.)

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Background
	What Is Data Visualization?
	Time Series Charts
	Bar Charts
	Histograms
	Data Maps
	Scatter Plots
	History
	Modern Landscape

	Why Data Visualization?
	Tools
	Languages, Environments, and Libraries
	Analysis Tools

	Process Overview
	Identify a Problem
	Gather Data
	Analyze Data
	Visualize Data

	Ethics of Data Visualization
	Cite Sources
	Be Aware of Visual Cues

	Summary

	Chapter 2: R Language Primer
	Getting to Know the R Console
	The Command Line
	Command History
	Accessing Documentation
	Packages

	Importing Data
	Using Headers
	Specifying a String Delimiter
	Specifying Row Identifiers
	Using Custom Column Names

	Data Structures and Data Types
	Data Frames
	Matrices
	Adding Lists
	Looping Through Lists
	Applying Functions to Lists
	Functions

	Summary

	Chapter 3: A Deeper Dive into R
	Object-Oriented Programming in R
	S3 Classes
	S4 Classes

	Statistical Analysis with Descriptive Metrics in R
	Median and Mean
	Quartiles
	Standard Deviation

	RStudio IDE
	R Markdown
	RPubs

	Summary

	Chapter 4: Data Visualization with D3
	Preliminary Concepts
	HTML
	CSS
	SVG
	JavaScript

	History of D3
	Using D3
	Setting Up a Project
	Using D3
	Binding Data

	Creating a Bar Chart
	Loading External Data
	Summary

	Chapter 5: Visualizing Spatial Data from Access Logs
	What Are Data Maps?
	Access Logs
	Parsing the Access Log
	Read in the Access Log
	Parse the Log File
	Geolocation by IP
	Output the Fields
	Adding Control Logic
	Creating a Data Map in R
	Mapping Geographic Data
	Adding Latitude and Longitude
	Displaying Regional Data

	Distributing the Visualization

	Summary

	Chapter 6: Visualizing Data over Time
	Gathering Data
	Data Analysis with R
	Calculating the Bug Count
	Examining the Severity of the Bugs

	Adding Interactivity with D3
	Reading in the Data
	Drawing on the Page
	Adding Interactivity

	Summary

	Chapter 7: Bar Charts
	Standard Bar Chart
	Stacked Bar Chart
	Grouped Bar Chart
	Visualizing and Analyzing Production Incidents
	Plotting Data on a Bar Chart with R
	Ordering Results
	Creating a Stacked Bar Chart

	Bar Charts in D3
	Creating a Vertical Bar Chart
	Creating a Stacked Bar Chart
	Creating an Overlaid Visualization

	Summary

	Chapter 8: Correlation Analysis with Scatter Plots
	Finding Relationships in Data
	Introductory Concepts of Agile Development
	Correlation Analysis
	Creating a Scatter Plot
	Creating a Bubble Chart

	Visualizing Bugs
	Visualizing Production Incidents
	Interactive Scatter Plots in D3
	Adding the Base HTML and JavaScript
	Loading the Data
	Adding Interactive Functionality
	Adding Form Fields
	Retrieving Form Data
	Using the Visualization

	Summary

	Chapter 9: Visualizing the Balance of Delivery and Quality with Parallel Coordinates
	What Are Parallel Coordinate Charts?
	History of Parallel Coordinate Plots
	Finding Balance
	Creating a Parallel Coordinate Chart
	Adding in Effort

	Brushing Parallel Coordinate Charts with D3
	Creating the Base Structure
	Creating a Y-Axis for Each Column
	Drawing the Lines
	Fading the Lines
	Creating the Axes

	Summary

	Index

