Pro Data
Visualization Using
R and JavaScript

Analyze and Visualize Key Data
on the Web

Second Edition

Tom Barker
Jon Westfall

Apress:

Pro Data Visualization
Using R and JavaScript

Analyze and Visualize Key Data
on the Web

Second Edition

Tom Barker
Jon Westfall

Apress’

Pro Data Visualization Using R and JavaScript: Analyze and Visualize Key Data
on the Web

Tom Barker Jon Westfall
Pipersville, PA, USA Cleveland, MS, USA
ISBN-13 (pbk): 978-1-4842-7201-5 ISBN-13 (electronic): 978-1-4842-7202-2

https://doi.org/10.1007/978-1-4842-7202-2

Copyright © 2022 by Tom Barker, Jon Westfall

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Zanwei Guo on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004, U.S.A.
Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.
com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484272015. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7202-2

For my grandmother, Ann Biango, who passed away during the
creation of this book. I was very lucky to have her in my life
Joraslong as I did.

—Tom Barker

Table of Contents

About the AUtROrS.......ccucmmimmmsemmmmmmssmsasssssas s Xi
About the Technical ReVIEWETccssesssnssssnsssassssnsssassssassssasssansssasssssssssnsssassssanssas Xiii
Acknowledgments.......cccccuuisssnmmmnmmmmmmssssssssssnnnmmmsssssssssssnnnseesssssssssnnnnnnsesssssssnnnnnnnnnnss XV
Chapter 1: BaCKground.......cueeemmmssssnsnmsssssssnsssssssnnssssssssnsssssssnsnssssssnnsnssssnnnnsssssnnnnsssss 1
What Is Data Visualization?..........cccccrennnennisenese s ss s s ssssssssessnnes 3
TIME SEHES ChAITSccveeeireerrese s nr s 4

Bar CRAITS.....coieeeicsiiese e e e e e e 4

gL (0T L1 OSSR 5

DAL MAPS ..ot e R e e e e r e r e e e e 6
BTz UL (=]l) OSSO 7
313 (0] OSSR 8
MOdEern LanASCaPEccevereriiriiesresessissse s s s sn e s s sn e s ne s s n e s n e s s e nn e e ne e nne s 12

Why Data ViSUaliZation?.........ccccveererninieniennsinsene s ses s ssesessesessesssssssessessessssessessesssssssessessens 14
TOOIS ..ttt 15
Languages, Environments, and LiDFarieS........ccvveverrnenserennnensensesensssessesesssssssessessessssessessens 15

L4 F2 1 R] O 17
PrOCESS OVEIVIBWvovvececeresssssssse e s se e s e e s se s e s s sesansnsnas 20
Identify @ ProbIEm ... s 20

CF (TS gD L TR 20
ANAIYZE DALA........coiircieerrc e ————————————————— 24
ViSUALIZE DALA..........coereriricccri s 30
Ethics of Data Visualization.............ccovevrnrnnnncnree s 3
01 IO 11 (- TR 32

Be AWAre OF VISUAI CUEScuceerererieeecsesssss e sesssss s 32
1] 1= OSSOSO 32

TABLE OF CONTENTS

Chapter 2: R Language Primer.......ccccurmmsmnnmmssssssnsmssnnnssnss 33
Getting to KNOw the R CONSOIE........c.cccrirerircrircscr ettt se e 33
The COMMANG LINE.......cveeereresnsesesesessssssese s se s sssssssssssssssssssssssssssssssssssssssnsassssens 37
ComMMAND HISTOIYcciiieirrerre s et e et 38
Accessing DOCUMENTALION..........cccvieverierir e s s n e sne e nae s 39
T €2 T - LS 40
IMPOMING DAL ..o s 43
USING HEBAUEKS ...t s r s e e e s s s r s nne s 44
Specifying a String Delimiter..........covcvvcncnc e ————— 45
Specifying ROW 1dentifiers.......c.covvrvinninsrr s 45
Using Custom Column NAMESccccveerrerirererec e s e se e e s e sessesens 46
Data Structures and Data TYPES......ccovecrererererererereee s 47
D2 0 2 1 1L 49
0 51
AdAING LISTS....cccciciicirirsenern it 54
Looping TRrough LiStScccucieiinninnenn s s ss e s s se e ssessessssessesnens 55
Applying FUNCLIONS 10 LiSESccccvceriiiciricrerr s se s s 56
FUNCHIONS ... e enne e nr s 59
SUIMIMANY....eviereeerere s e s e e s e s e s se e e e e s e e e e e Re e e e e s e e e e nRn e s sa e nen e nrnsnnnns 61
Chapter 3: A Deeper Dive into Rcccccuiemmmmnnsemnmmmsssssnmmsssssnmnsssssnssssssssnsssssssnsnns 63
Object-Oriented Programming in R........cccveriirinine s sessesese s sesse e sessessessesessessessenes 63
S3 ClASSESeuiuieririireeie e 64

G4 ClASSEScvrriueueireressssei et 68
Statistical Analysis with Descriptive Metrics in R........ccccvvirinnninreniens s s sesessessssessessenns 70
Median and MEAN.........cooiiiirrerrre s 74
QUANTIIBS ..ot bbb bbb e e 74
Standard DEVIALIONccvrriicrrr s 75
RSTUTIO IDEeeeeeeceeeeesss st s st np et 76
T T2 [0 N 78
RPUDS ...oovitititsisisesssesese e ettt bbb e e 83
11T 1117 SO 85

TABLE OF CONTENTS

Chapter 4: Data Visualization with D3..........ccccccmmnnnnmmmmnnmssnnmnsssssmmsssssemssssnms 87
Preliminary CONCEPIS......covi it e et 87
HTIVIL ..ttt bbb e e e 88
£ ittt R R AR e e e R R 90

£31 OSSP TRR TR 91

B L T] R 94
HISTOIY OF D3 ... e e e e b e p e e nn 95
L] T N 2 R 96
Setting UP @ PrOJECT.......cco e 97
LS N 0 S 97

31T 01T N D 99
Creating @ Bar Chart...........cocuoevrenernnesesesesese s s s se s sesss e s sessssenns 103
Loading EXternal Data..........c.cucevenerenernsenenesesese s s ss s s sn s e senns 111
£ 1§14 R 114
Chapter 5: Visualizing Spatial Data from Access LOgS.......ccceurmsssmmmmmssssnnnsssssssnnnss 117
What Are Data MAPS?.....cc.evueieriereresinseresessesessessessessssessessesssssssessesaesssssssesaesasssssessesaesssssssesseses 117
ACCESS LOGS ..ucviriirirsesiesss s s s s s s s e s s e s e e s b e b e e R b e e e e R e e e e e e e Re e Re e e e naenne s 121
Parsing the ACCESS LOT.....ccuiiiimiririninsinese s ss s e st ss s st ssesnesssssssesnens 123
Read in the ACCESS LOQccviiireriirsine ettt 124
Parse the LOg File ... s s sn e s 125
GEOIOCALION DY IP.....eee e e e e s 129
OULPUL the FIeldscoceuerr e e e 132
Adding Control LOGICcecvverrerriiinsiresesis s sse s sesse s sssses e s ssesss e s e ssesssssssessessesssssssssnesnes 134
Creating a Data Map in R........cocoiiinsr s 136
Distributing the Visualization............cccucvinivnininnsr e 146

£ 111117 S 151
Chapter 6: Visualizing Data over Time........ccccuummmmmmmmmmmmmmmsssssssssssnssssssssssssssssssssnnss 153
GAthering DAtacccvveerenernesre s 154
Data Analysis With R ... s 155
Calculating the Bug COUNT..........ccvirerneserese s s s ssanis 157
Examining the Severity of the BUgS.........ccvriiinnns s seanes 163

TABLE OF CONTENTS

Adding Interactivity With D3.........cccoovriiir 166
Reading in the Data..........ccoccvvrieninininsi s 167
Drawing on the PAge ... s 169
Adding INTEraCHIVITY.......corerierieriee s 175

31111117 SO RS 183

Chapter 7: Bar Chartsccccuvemrmmsssssnmmsssssnnmssssssssssssssssssssssssnssssssssnsssssnnnsssssnnnnnss 185

Standard Bar Chart ... s 186

StacKed Bar Chart.........c.cccevvererenernsesesesesese s s e s sesse e s e sss e sessssssssssssssssessssnssssessssssenns 188

Grouped Bar CRAT ..ot s e e e s s 191

Visualizing and Analyzing Production INCIdents..........ccccuvvrnnrniniennsnsne s sersese e sessesenaens 192

Plotting Data on a Bar Chart With R ... sesse s sessessessessssessesaens 197
Ordering RESUIScccvierrerierirrere st sesse s s ss s e s e s saese s sae s se e sae s e e saesaese e e ssesaesa e e saesnees 200
Creating a Stacked Bar Chartccvcevevrnerieneresessere s sese e ssssessessessesessessessessssessesnees 202

Bar Charts iN D3..........cceoeeiereesere e 203
Creating a Vertical Bar Chartc.cccvevnrerienierssesseresessssesessessssessessessessssessessesssssssessees 204
Creating a Stacked Bar Chartccvcevevrreriereresesserese s sesessessssessessesaessssessessessssessessees 208
Creating an Overlaid ViSualizationc.ccevvererenenserserienessensesessssessesessessssessessesssssssessees 212

SUMIMANY ..ttt R e e e e e R e e e e e e e R e R e e e e e Re e Re R e b e e e RenR e e e e naenrs 217

Chapter 8: Correlation Analysis with Scatter Plotsccccvmmmmmmnnnnnnssssssssnnnnnns 219

Finding Relationships in DAtcccccvvrnmnenmnesernsesesesese s sessesenns 220

Introductory Concepts of Agile Development.........c.ccovecnennns s 224

Correlation ANAIYSISccccveveierirere s s r e e nnn 225
Creating @ SCAMEr PIOt...........ccoerivririre e sr e e 226
Creating a Bubble Chartcccoivrvnierenr s s sa s e s sne s 227

VISUALIZING BUGS ...uveereereerersereressesessessessessesessessessessssessessessessssessessesssssssessessesssssnsessesssssssessessens 228

Visualizing Production INCIAENTScccvvrienerirrir e sae e s 232

Interactive Scatter PIOS i D3 ... 235
Adding the Base HTML and JavaScCripl........ccccooumimnnninnnin s sessessesnes 235
Loading the DAt ... e s e 236
Adding Interactive FUNCHIONAIILYcocvcnirienienr s 237

viil

TABLE OF CONTENTS

Adding FOrM FIelUS......ccooeiiiriiriin e ss e s s s s s sae s s s 239
Retrieving FOrm Data...........ccvrienininiinsin e se e s s sae s 240
Using the VISUAlIZAtioncccvcvvenininiinnc s snesae s s 241
31111117 OSSR 245
Chapter 9: Visualizing the Balance of Delivery and Quality with Parallel
I 1) L 247
What Are Parallel Coordinate ChartS?cccucueerirernsmnnnensssse s ssssesessessssenens 247
History of Parallel Coordinate PIOLS..........ccvevrrrinennsersene s seses s sesse s ses e s ssessssessesnens 251
FINAING BAIANCEc.eeeecirere it r e s e 254
Creating a Parallel Coordinate Chartccccvvevririnierenr s sse e sne s 254
D0 (o 1 I N =X {0 S 257
Brushing Parallel Coordinate Charts With D3........ccccvevvrrmieriennsenenenssessesesessssessessessssessessens 260
Creating the Base STIUCIUIEcvcvvvverererrerrere vt s s e nse e ss s e s sae s s saesness s e snesaees 260
Creating a Y-AXis for EACh COIUMNcccvveververere s rerese s sesessessesesessesaesesessessesssssssesaees 261
Drawing the LINES.......cce e ririerie v re s s s s e s s s e sn e s s sa e snesnesaeens 262
Fading the LINEScoceiee ettt e e s a e s a e s ae e s 263
Creating the AXES ...cccveererrrrerrerereserse s s s e s saese s s s s s e s s ae s e e s e e ae e s e e e e aesae e e e naenaees 264
SUMIMAIY ..ttt e e e e R e e e e e R e R e e e e e R e R e e e e e Re e Re R e e e e e Re R e e e e e Renris 269
INO@X . ueeeiiienrsssnnnsssnnssssnnsssssnsssssnsssssnssssnnnssssnnaasannansnnnansnnnnnsannnnssnnnnssnnnnssnnnnssnnnnnsnnss 271

ix

About the Authors

Tom Barker is the Senior Manager of Web Development

at Comcast. He has authored Pro JavaScript Performance:
Monitoring and Visualization and co-authored Foundation
Website Creation with HTML5, CSS3, and JavaScript. Tom
has also served as an adjunct professor at Philadelphia

| University for the last ten years. He lives outside of
Philadelphia with his wife and two children.

Jon Westfall is an associate professor of psychology at Delta
State University. He has authored Set Up and Manage Your
Virtual Private Server, Practical R 4, Beginning Android Web
Apps Development, Windows Phone 7 Made Simple, and
several works of fiction including One in the Same, Mandate,
and Franklin: The Ghost Who Successfully Evicted Hipsters

' from His Home and Other Short Stories. He lives in Cleveland,
Mississippi, with his wife.

About the Technical Reviewer

Matt Wiley leads institutional effectiveness, research,

and assessment at Victoria College, facilitating strategic

and unit planning, data-informed decision making,

and state/regional/federal accountability. As a tenured,
associate professor of mathematics, he won awards in both
mathematics education (California) and student engagement
(Texas). Matt holds degrees in computer science, business,

and pure mathematics from the University of California and
Texas A&M systems.

Outside academia, he has co-authored three books about the popular R
programming language and was managing partner of a statistical consultancy for
almost a decade. His programming experience is with R, SQL, C++, Ruby, Fortran, and
JavaScript.

A programmer, a published author, a mathematician, and a transformational leader,
Matt has always melded his passion for writing with his joy of logical problem solving
and data science. From the boardroom to the classroom, he enjoys finding dynamic ways
to partner with interdisciplinary and diverse teams to make complex ideas and projects
understandable and solvable. Matt enjoys being found online via Twitter at @matt math
or http://mattwiley.org/.

xiii

http://mattwiley.org/

Acknowledgments

I want to thank Ben Renow-Clarke for thinking of me for this great project. I want to
thank Matthew Moodie and Christine Rickets and the rest of the team at Apress for their
guidance and direction. I want to thank Matt Canning for helping me see the code with
fresh eyes and for keeping me honest.

I want to thank my team at Comcast: every one of you is amazing and I am made
better by being a part of such an incredible team.

I want to thank my amazing wife Lynn and our beautiful children Lukas and Paloma
for their patience and understanding while I would write every night until late in the
night.

—Tom Barker

I'd like to thank my wife and parents for their love and support. I'd also like to thank the
team at Apress for their hard work to help make this project a reality.

—Jon Westfall

CHAPTER 1

Background

When the first edition of this text was released, there was a new concept emerging in
the field of web development: using data visualizations as communication tools. Today,
Infographics are everywhere on the Net; however, this concept is something that was
already well established in other fields and departments for generations. At the company
where you work, your finance department probably uses data visualizations to represent
fiscal information both internally and externally; just take a look at the quarterly
earnings reports for almost any publicly traded company. They are full of charts to show
revenue by quarter, or year over year earnings, or a plethora of other historic financial
data. All are designed to show lots and lots of data points, potentially pages and pages of
data points, in a single easily digestible graphic.

Compare the bar chart in Google’s quarterly earnings report from back in 2007 (ah,
when Google was a “small” company; see Figure 1-1) to a subset of the data it is based on
in tabular format (see Figure 1-2).

© Tom Barker, Jon Westfall 2022
T. Barker and J. Westfall, Pro Data Visualization Using R and JavaScript,
https://doi.org/10.1007/978-1-4842-7202-2_1

https://doi.org/10.1007/978-1-4842-7202-2_1#DOI

CHAPTER 1 BACKGROUND

Quarterly Revenue

Q4'07 Y/IY Growth = 51%
$4,500 Q4'07 Q/Q Growth = 14%

$4,000

$3,500

$3,000

$2,500

$2,000

$1,500

Q1'05 Q2'05 Q3'05 Q4'05 Q1'06 Q2'06 Q3'06 Q4'06 Q1'07 Q207 Q3'07 Q4'07

Figure 1-1. Google Q4 2007 quarterly revenue shown in a bar chart

Tl & s0d Cla B

Aedibsen Fetermat Oer Totst
Sk B Comprrhmiive Retsincd Stackbsen’
—Rem_ _Ams . Amem —
Balance at January 1, 2005 266917 H 67 5 21582352 (249470} 5436 H SP0ATL 5 1829056
wock in conncstion with follew-on i Rt 14569 s 4316022 (2036} 4314001
Stock-hased award activity 11241 n 79418 132491 - - Ti1520
Compeckersive iscome:
Chmgai alized gain floss) on availabh i fiax effect of $11,404 = = g = 16,550 = 16,580
Fareign sumney tanilation adjustment 117.997) (17.997)
Netincoss - - - 1468397 1465397
Tossl eomprebanaive income — — - — = — 1463980
Balunce ot December 31, 2005 WI027 iTH TATI IR 1913} 019 FT G 418957
lssuance of common stock in connection with follew-on public offering and acquisitioes, ret THES L] 3236778 - - 3136786
Stock -based activity 1281 b 1168336 LEIES - -_— 1287359
Comprekersive income:
Change Jized ain foas) on availabl 513,250 — = — — 19.309) - (L]
Foreign cumeney translation adjustmest - - - 38,601 - 38,601
Net income - - -_— - 3077 446 3077446
Total comprehensive income 31.096.738
Balance a1 December 31, 2006 Jox997 kL) 11,562,906 — 3311 5133314 17,036,840
Stock-based award activity 10 4 1358315 1358319
Compeekieaive ineome: —
Change in uercalized gaie flow) on availsble-forssle investmeets, net of tax ffee of §19,963 - 2,009 2,009
Fareign cumency translation adjustmert - - - - 61,003 61,003
Netincoms -_ - -— - - 4200720 4,203,720
Total comprehensive income = = - - - — 4193782
j i ings opon adeption ofFIN 48 - - - - = Q263) @.62)
Talance o December 31,2007 312917 H 33 5 13.241221 s 113373 H 9J34JZ2. 5 22 EBILTI

Figure 1-2. Similar earnings data in tabular form

The bar chart is imminently more readable. We can clearly see by the shape of it
that earnings are up and have been steadily going up each quarter. By the color coding,
we can see the sources of the earnings, and with the annotations, we can see both

the precise numbers that those color coding represent and what the year over year

percentages are.

CHAPTER 1 BACKGROUND

With the tabular data, you have to read labels on the left, line up the data on the
right with those labels, do your own aggregation and comparison, and draw your own
conclusions. There is a lot more upfront work needed to take in the tabular data, and
there exists the very real possibility of your audience either not understanding the data
(thus creating their own incorrect story around the data) or tuning out completely
because of the sheer amount of work needed to take in the information.

It’s not just the finance department that uses visualizations to communicate dense
amounts of data. Maybe your operations department uses charts to communicate
server uptime, or your customer support department uses graphs to show call volume.
Whatever the case, it’s no wonder that engineering and web development groups have
finally gotten on board with this.

As part of any department, group, or industry, we have a huge amount of relevant
data that is important for us to first be aware of so that we can refine and improve what
we do, but also to communicate out to our stakeholders, to demonstrate our successes or
validate resource needs, or to plan tactical roadmaps for the coming year.

Before we can do this, we need to understand what we are doing. We need to
understand what data visualizations are, a general idea of their history, when to use
them, and how to use them both technically and ethically.

What Is Data Visualization?

OK, so what exactly is data visualization? Data visualization is the art and practice of
gathering, analyzing, and graphically representing empirical information. They are
sometimes called information graphics (“Infographics”), or even just charts and graphs.
Whatever you call it, the goal of visualizing data is to tell the story in the data. Telling the
story is predicated on understanding the data at a very deep level and gathering insight
from comparisons of data points in the numbers.

There exists syntax for crafting data visualizations, patterns in the form of charts that
have an immediately known context. We devote a chapter to each of the significant chart
types later in the book.

CHAPTER 1 BACKGROUND

Time Series Charts

Time series charts show changes over time. See Figure 1-3 for a time series chart that
shows the weighted popularity of the keyword “Data Visualization” from Google Trends
(www.google.com/trends/).

Figure 1-3. Time series of weighted trend for the keyword “Data Visualization”
from Google Trends

Note that the vertical y-axis shows a sequence of numbers that increment by 20 up to
100. These numbers represent the weighted search volume, where 100 is the peak search
volume for our term. On the horizontal x-axis, we see years going from 2007 to 2012. The
line in the chart represents both axes, the given search volume for each date.

From just this small sample size, we can see that the term has more than tripled
in popularity, from a low of 29 in the beginning of 2007 up to the ceiling of 100 by the
end of 2012.

Bar Charts

Bar charts show comparisons of data points. See Figure 1-4 for a bar chart that
demonstrates the search volume by country for the keyword “Data Visualization,” the
data for which is also sourced from Google Trends.

http://www.google.com/trends/

CHAPTER 1 BACKGROUND
Search Volume for Keyword

‘Data Visualization’ by Region
from Google Trends

Spain

France
Germany

China

United Kingdom
Netherlands
Australia
Canada

India

United States

o —
n
o
g_
o
=]

80 100

Figure 1-4. Google Trends breakdown of search volume by region for keyword
“Data Visualization”

We can see the names of the countries on the y-axis and the normalized search
volume, from 0 to 100, on the x-axis. Notice, though, that no time measure is given. Does
this chart represent data for a day, a month, or a year?

Also note that we have no context for what the unit of measure is. I highlight
these points not to answer them but to demonstrate the limitations and pitfalls of this
particular chart type. We must always be aware that our audience does not bring the
same experience and context that we bring, so we must strive to make the stories in our
visualizations as self-evident as possible.

Histograms

Histograms are a type of bar chart that displays continuous data on both axes. It is

used to show the distribution of data or how often groups of information appear in

the data. See Figure 1-5 for a histogram that shows how many articles the New York
Times published each year, from 1980 to 2012, that related in some way to the subject of
data visualization. We can see from the chart that the subject has been ramping up in
frequency since 2009.

CHAPTER 1 BACKGROUND

Distribution of Articles about Data Visualization

by the NY Times
8 —
‘LE —
)
&
=3
g 2 —
w
o
| | | | | | 1
1980 1985 1990 1995 2000 2005 2010
Year

Figure 1-5. Histogram showing distribution of NY Times articles about data
visualization

Data Maps

Data maps are used to show the distribution of information over a spatial region.
Figure 1-6 shows a data map used to demonstrate the interest in the search term “Data

Visualization” broken out by US states.

CHAPTER 1 BACKGROUND

Figure 1-6. Data map of US states by interest in “Data Visualization” (data from
Google Trends)

In this example, the states with the darker shades indicate a greater interest in
the search term. (This data also is derived from Google Trends, for which interest is
demonstrated by how frequently the term “Data Visualization” is searched for on
Google.) It’s also worth noting that while darker shades tend to be used to indicate
greater impact, without a legend, we wouldn’t know this for sure.

Scatter Plots

Like bar charts, scatter plots are used to compare data, but specifically to suggest
correlations in the data, or where the data may be dependent or related in some way.
See Figure 1-7, in which we use data from Google Correlate (www.google.com/trends/
correlate), to look for a relationship between search volume for the keyword “What is
Data Visualization” and the keyword “How to Create Data Visualization.”

http://www.google.com/trends/correlate
http://www.google.com/trends/correlate

CHAPTER 1 BACKGROUND

Correlation in Search Volume
for Search Terms 'What is Data Visualization'
and 'How to Create Data Visualization'

How to Create

What is

Figure 1-7. Scatter plot examining the correlation between search volume for
terms related to “Data Visualization,” “How to Create,” and “What is”

This chart suggests a positive correlation in the data, meaning that as one term
rises in popularity, the other also rises. So what this chart suggests is that as more
people find out about data visualization, more people want to learn how to create data
visualizations.

The important thing to remember about correlation is that it does not suggest a
direct cause—correlation is not causation. Just because two numbers move in the same
direction, does not mean one is causing the other to change. There could always be a

third variable, or coincidence, causing the correlation.

History

If we're talking about the history of data visualization, the modern conception of data
visualization largely started with William Playfair. William Playfair was, among other
things, an engineer, an accountant, a banker, and an all-around Renaissance man who

CHAPTER 1 BACKGROUND

single-handedly created the time series chart, the bar chart, and the bubble chart.
Playfair’s charts were published in the late eighteenth century into the early nineteenth
century. He was very aware that his innovations were the first of their kind, at least in
the realm of communicating statistical information, and he spent a good amount of
space in his books describing how to make the mental leap to seeing bars and lines as
representing physical things like money.

Playfair is best known for two of his books: the Commercial and Political Atlas and
the Statistical Breviary. The Commercial and Political Atlas was published in 1786 and
focused on different aspects of economic data from national debt to trade figures and
even military spending. It also featured the first printed time series graph and bar chart.

His Statistical Breviary focused on statistical information around the resources of the
major European countries of the time and introduced the bubble chart.

Playfair had several goals with his charts, among them perhaps stirring controversy,
commenting on the diminishing spending power of the working class, and even
demonstrating the balance of favor in the import and export figures of the British
Empire, but ultimately his most wide-reaching goal was to communicate complex
statistical information in an easily digested, universally understood format.

Note Both books are back in print relatively recently, thanks to Howard Wainer,
lan Spence, and Cambridge University Press.

Playfair had several contemporaries, including Dr. John Snow, who made my
personal favorite chart: the cholera map. The cholera map is everything an informational
graphic should be: it was simple to read, it was informative, and, most importantly, it
solved a real problem.

The cholera map is a data map that outlined the location of all the diagnosed cases of
cholera in the outbreak of London 1854 (see Figure 1-8). The shaded areas are recorded
deaths from cholera, and the shaded circles on the map are water pumps. From careful
inspection, the recorded deaths seemed to radiate out from the water pump on Broad
Street.

CHAPTER 1 BACKGROUND

e S L .
% QCA C AN
. e o e -_ﬁ--

Figure 1-8. John Snow’s cholera map

Dr. Snow had the Broad Street water pump closed, and the outbreak ended.

Beautiful, concise, and logical.

Another historically significant information graphic is the Diagram of the Causes of
Mortality in the Army in the East, by Florence Nightingale and William Farr. This chart is
shown in Figure 1-9.

10

CHAPTER 1 BACKGROUND

. DIAGRAM er rux CAUSES o MORTALITY "

APRIL 1855 To MARCH 1856 IN THE ARMY IN THE EAST. APRIL 1854 70 MARCH 1B55.

The Areas of Vhe e ved, & black wedges are cach measured frome
Yhe cenlre as the commaon verler.

The blaie wedges measured. fromy Vhe centre of the eirele rgpresent areas
for area Ve deathes (FomPreventifie or Mitigable Zymotee deseases, Ue
red wedges mearred: fFom: thecentre Vie deaths o wourds, &the
dlack wedges measured from the cenire Ve deatl fFom ald other caees.

The black line acress theved triangle. in Nov? (54 marks the bnmdary
o the dealhe iom all iher coter dicring Mee meenil.

I Gelober 4859, & April 1555, the black area -cotncides wnth the red,
incdarneary & February /856 the blie coincides with Ve black:.

The entire areas may be compared by following the-bive. theved & the

Figure 1-9. Florence Nightingale and William Farr’s Diagram of the Causes of
Mortality in the Army in the East

Nightingale and Farr created this chart in 1856 to demonstrate the relative number of
preventable deaths and, at a higher level, to improve the sanitary conditions of military
installations. Note that the Nightingale and Farr visualization is a stylized pie chart. Pie
charts are generally a circle representing the entirety of a given data set with slices of the
circle representing percentages of a whole. The usefulness of pie charts is sometimes
debated because it can be argued that it is harder to discern the difference in value
between angles than it is to determine the length of a bar or the placement of a line
against Cartesian coordinates. Nightingale seemingly avoids this pitfall by having not
just the angle of the wedge hold value but by also altering the relative size of the slices so
they eschew the confines of the containing circle and represent relative value. This likely
wins over some of the detractors of pie charts; however, in some circles of science and
academia, there is no such thing as a good pie chart!

All the above examples had specific goals or problems that they were trying to solve.

11

CHAPTER 1 BACKGROUND

Note A rich comprehensive history is beyond the scope of this book, but if you
are interested in a thoughtful, incredibly researched analysis, be sure to read
Edward Tufte’s The Visual Display of Quantitative Information.

Modern Landscape

Data visualization is in the midst of a modern revitalization due in large part to the
proliferation of cheap storage space to store logs and free and open source tools to
analyze and chart the information in these logs.

From a consumption and appreciation perspective, there are websites that are
dedicated to studying and talking about information graphics. There are generalized
sites such as FlowingData that both aggregate and discuss data visualizations from
around the Web, from astrophysics timelines to mock visualizations used on the floor of
Congress.

The mission statement from the FlowingData About page (http://flowingdata.
com/about/) is appropriately the following: “FlowingData explores how designers,
statisticians, and computer scientists use data to understand ourselves better—mainly
through data visualization.”

There are more specialized sites such as quantifiedself.com that are focused on
gathering and visualizing information about oneself. There are even web comics about
data visualization, the quintessential one being xkcd.com, run by Randall Munroe. One
of the most famous and topical visualizations that Randall has created thus far is the
Radiation Dose Chart. We can see the Radiation Dose Chart in Figure 1-10 (it is available
in high resolution here: http://xkcd.com/radiation/).

12

http://flowingdata.com/about/
http://flowingdata.com/about/
http://xkcd.com/radiation/

Radiation Dose

Thiz is a chart of the ionizing rodiotion dese a
uillmmlm cells of the body.
The scné ramber of sieverts cbsorbed

Chart

CHAPTER 1 BACKGROUND

con obsorb from vorious sources. The unit for obeorbed doge iz “sievert™ (Sv), ond measures the effect a dose of rodlotion
Dne slmrt all at om) will make you sick, ond tod many lm'e Will kil you, but we sofely absorb
in ter time will generolly couse more damoge, bul

small cmourits of notural rodiction daily.

b oyour cusulabive long-ters dese plays a big role in things like concer risk.

==
& Slesping next to scneone (9.95 wSv) B

= l.lvu\q within 508 niles of o nuclear
r plant for o yeor (B.89 uSv)

§ Eating cne tarona (8.1 kSv)
Living within 50 niles of a ccal
i pover plant for o year (8.3 pSv)
E888 wrnocroy EBER using o oRT soniter
gams (1 wsv) g2Es for a year (1 ysv)

Extro cose from spending one day in
m um with higher-than-cvercge

ral redigtion, such
os t.ne Colorade ploteou (1.2 pSv)

[IzIIms EESHIEY
EIIEIHIEI! Bockground doss recetved

by an average pers
one normal day (18 ushr)

LA (40 u5v)

(8 psv)-a
t produce icnizing rodiation® ond L couse concer.
S

DIBIM a cell phone cell m‘ tronsmitier dees

\

0 Chest x-ray (20 pdv)
-2, All the doses in the blus
B0 chort cosbined (~68 uSv)
o Extra gose to Tokyo in weeks following
O Fukushing occident (30 nSv)
oz Living in o stone, brick, or concrete
B8 pui lding for o year (70 usv)

averoge totol dose from the Three
88 nile Island occident Lo somecns
living within 18 niles (ﬂ pﬁf}

total dose received at

o EPA yeorly release torget f
B o ruclear power plont (38 pm)

Hiﬂﬁllimiﬁ Iﬁiﬁﬁ fose tron sencirg an

Badcaaea0s 8 Bodasabed ,
!iﬂﬂ!ll Il imnm 2818 (6 WSv in one spot,

8488583283 8385253002 A8RAagARRY DUt vories vildLy)

B8E8 the

B8 ol ronina
Fukushing Town Hall over two weeks
tollowing accident (102 wSv)

!li EPA yearly relecss
Limit for a nuclear
88 pover plont (258 usv)

Yeorly dose from
natural potessiun in
body (350 piv)

EPA yearly linit on
radiotion exposure
to o single mesher
of the public

(1 nvel, D00 pSv)

Typical dose over
two wesks in Fuku-
shina En:lnmnn
?mg (1 nSv,
sl sau
fq— hlgher doses)

Haximum yearly dose permitted for US rodiation vorkers (50 nSv)

a mi!
ﬁlﬁﬁiiiﬁiﬁ e ﬁiﬁiﬁiﬁﬂ
amwuma lggu ﬁmmsmu

B D= (0,85 Ev)

L Sl

HHHEHHh

/

-

Ten minutes next to the GEEG3

Chemoby| reactor core ofter mﬁg ﬁ
explozion ond meltdoun (59 3v) SREIAREEGR \

ARt e

—bpar
R e b 5. P e AP e 5 e Al gl

i

AR S A BT

e

L P P TR M)

Hunroe, vith hiln frem Ellen, Senior Reoctor Operctor ot the Reed who
education only. If you're basing radiotion sofety procsdures on tn intemet PNG isage ard things

Chart by Rendal |
lots of mistekes; it's for general

Radiation worker
one-year dose
limit (58 nSv) §

Approxiyate totol dose ot ‘, All doses in Lowest one-yeor dose
one stakion ot the north- og Ween chart cleorly linked to
west edge of the Fukushing g wun conb ined increvsed concer

exclusion zone (40 nSv) @ B85 e nsv) risk (108 nSv) 08

Dose cousing synptoms of

received by two f ina rodiction poiscning if

plant warkers (~180 ndv) tm I B shart fime H'E
EPA guidalines for emergency (408 » but vories)
situntions, provided to ——
ST Gk elson okinat severs rodiction nlnnunlnnﬂ

Usual by fatal rodiation
poigoning. Survivel occa-
slonally possible with
treatnent (4 Sv)

Dose Linit for exergency
workers protecting valuchle
property (108 wSv)

Dose limit for ems:

(om0 wsv, 2 3v) B

Fotol dose, even with treateent (8 Sv) provpt

u-lmmnmthﬁalutufuumuw 1'n sure I've added in
ngs g9 wrong, you hove no one to blawe but yourself.

Figure 1-10. Radiation Dose Chart, by Randall Munroe. Note that the range

in scale being represented in this visualization as a single block in one chart is
exploded to show an entirely new microcosm of context and information. This
pattern is repeated over and over again to show an incredible depth of information

13

CHAPTER 1 BACKGROUND

This chart was created in response to the Fukushima Daiichi nuclear disaster of
2011 and sought to clear up misinformation and misunderstanding of comparisons
being made around the disaster. It did this by demonstrating the differences in scale
for the amount of radiation from sources such as other people or a banana up to what a
fatal dose of radiation ultimately would be—how all that compared to spending just ten
minutes near the Chernobyl meltdown.

Over the last quarter of a century, Edward Tufte, author and professor emeritus at
Yale University, has been working to raise the bar of information graphics. He published
groundbreaking books detailing the history of data visualization, tracing its roots even
further back than Playfair to the beginnings of cartography. Among his principles is
the idea to maximize the amount of information included in each graphic—both by
increasing the amount of variables or data points in a chart and by eliminating the use
of what he has coined chartjunk. Chartjunk, according to Tufte, is anything included in a
graph that is not information, including ornamentation or thick, gaudy arrows.

Tufte also invented the sparkline, a time series chart with all axes removed and only
the trend line remaining to show historic variations of a data point without concern for
exact context. Sparklines are intended to be small enough to place in line with a body
of text, similar in size to the surrounding characters, and to show the recent or historic
trend of whatever the context of the text is.

Why Data Visualization?

In William Playfair’s introduction to the Commercial and Political Atlas, he rationalizes
that just as algebra is the abbreviated shorthand for arithmetic, so are charts a way

to “abbreviate and facilitate the modes of conveying information from one person to
another” Almost 300 years later, this principle remains the same.

Data visualizations are a universal way to present complex and varied amounts of
information, as we saw in our opening example with the quarterly earnings report. They
are also powerful ways to tell a story with data.

Imagine you have your Apache logs in front of you, with thousands of lines all
resembling the following:

127.0.0.1 - - [10/Dec/2012:10:39:11 +0300] "GET / HTTP/1.1" 200 468 "-"
"Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.1.3) Gecko/20061201
Firefox/2.0.0.3 (Ubuntu-feisty)"

14

CHAPTER 1 BACKGROUND

127.0.0.1 - - [10/Dec/2012:10:39:11 +0300] "GET /favicon.ico HTTP/1.1" 200
766 "-" "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.1.3) Gecko/20061201
Firefox/2.0.0.3 (Ubuntu-feisty)"

Among other things, we see IP address, date, requested resource, and client user
agent. Now imagine this repeated thousands of times—so many times that your eyes
kind of glaze over because each line so closely resembles the ones around it that it’s hard
to discern where each line ends, let alone what cumulative trends exist within.

By using some analysis and visualization tools such as R, or even a commercial
product such as Splunk, we can artfully pull out all kinds of meaningful and interesting
stories out of this log, from how often certain HTTP errors occur and for which resources
to what our most widely used URLs are, to what the geographic distribution of our user
base is.

This is just our Apache access log. Imagine casting a wider net, pulling in release
information, bugs, and production incidents. What insights we could gather about what
we do: from how our velocity impacts our defect density to how our bugs are distributed
across our feature sets. And what better way to communicate those findings and tell
those stories than through a universally digestible medium, like data visualizations?

The point of this book is to explore how we as developers can leverage this practice
and medium as part of continual improvement—both to identify and quantify our
successes and opportunities for improvements and more effectively communicate our
learning and our progress.

Tools

There are a number of excellent tools, environments, and libraries that we can use both
to analyze and visualize our data. The next two sections describe them.

Languages, Environments, and Libraries

The tools that are most relevant to web developers are Splunk, R, and the D3 (Data-
Driven Documents) JavaScript library. See Figure 1-11 for a comparison of interest over
time for them (from Google Trends).

15

CHAPTER 1 BACKGROUND

Explere trends Interest over time

Hot searches The number 100 represents the peak search volume Mews neadlines
Search terms

x I Splunk

* I R Language

x H D3js
+ Add term
~ Other comparisons

e Search terms

Locations
Time ranges

Figure 1-11. Google Trends analysis of interest over time in Splunk, R, and D3

From the figure, we can see that R has had a steady consistent amount of interest
since 200; Splunk had an introduction to the chart around 2005, had a spike of interest
around 2006, and had steady growth since then, which only started tapering off in
2019. As for D3, we see it just start to peak around 2011 when it was introduced and its
predecessor Protovis was sunsetted. R and D3 have remained relatively stable in interest
in the years since 2013.

Let’s start with the tool of choice for many developers, scientists, and statisticians:
the R language. We have a deep dive into the R environment and language in the next
chapter, but for now, it’s enough to know that it is an open source environment and
language used for statistical analysis and graphical display. It is powerful, fun to use,
and, best of all, it is free.

Splunk has seen a tremendous steady growth in interest over the last few years—and
for good reason. It is easy to use once it’s set up, scales wonderfully, supports multiple
concurrent users, and puts data reporting at the fingertips of everyone. You simply set it
up to consume your log files; then you can go into the Splunk dashboard and run reports
on key values within those logs. Splunk creates visualizations as part of its reporting
capabilities, as well as alerting. While Splunk is a commercial product, it also offers a free
trial version, available here: waw.splunk.com/download.

D3 is a JavaScript library that allows us to craft interactive visualizations. It is the
official follow-up to Protovis. Protovis was a JavaScript library created in 2009 by Stanford
University’s Stanford Visualization Group. Protovis was sunsetted in 2011, and the
creators unveiled D3. We explore the D3 library at length in Chapter 4.

16

http://www.splunk.com/download

CHAPTER 1 BACKGROUND

Analysis Tools

Aside from the previously mentioned languages and environments, there are a number
of analysis tools available online.

A great hosted tool for analysis and research is Google Trends. Google Trends
allows you to compare trends on search terms. It provides all kinds of great statistical
information around those trends, including comparing their relative search volume (see

Figure 1-12), the geographic area those trends are coming from (see Figure 1-13), and
related keywords.

terest: “data scientist”, "computer scientist™. Worldwide, 2004 - present.

Trends

o -

Explore trends Interest over time

Hot searches The number 100 reprosents the peak search volume Mews headlines Forecast

Search terms
*® I “data scientist”
= I “computer scier &0 \/

+ Add term
» Other comparisons
—

Limit to

Web Search

Figure 1-12. Google Trends for the terms “data scientist” and “computer scientist”
over time; note the interest in the term “data scientist” growing rapidly from 2011
on to match the interest in the term “‘computer scientist”

17

CHAPTER 1 BACKGROUND

Regional interest ~ | Q E

>
.“)
0 — 100 R o
» View change over time ~ m

Figure 1-13. Google Trends data map showing geographic location where interest
in the keywords is originating

Another great tool for analysis is Wolfram|Alpha (http://wolframalpha.com). See
Figure 1-14 for a screenshot of the Wolfram|Alpha home page.

3% WolframAlpha sz

Enter whal you want 1o calculate or know about:

Figure 1-14. Home page for Wolfram|Alpha

18

http://wolframalpha.com

CHAPTER 1 BACKGROUND

Wolfram|Alpha is not a search engine. Search engines spider and index content.
Wolfram|Alpha is instead a question answering (QA) engine that parses human-readable
sentences with natural language processing and responds with computed results. Say,
for example, you want to search for the speed of light. You might go to the Wolfram|Alpha
site and type in “what is the speed of light” Remember that it uses natural language
processing to parse your search query, not the keyword lookup.

The results of this query can be seen in Figure 1-15. Wolfram|Alpha essentially looks
up all the data it has around the speed of light and presents it in a structured, categorized
fashion. You can also export the raw data for each result.

R WolframAlpha

| what is the speed of light 8 |

o — 18 - m —%y Examples = Random

Input interpretation:

[

Value: Show exact value

299.8 km/ms
299792 km/s
2,998 < 10" m/s
186282 mi/s 1
6.706 < 10* mph

1 Manck speed

Comparison:

= 2.4 « speed of light in diamond

Interpretation:

speed

Basic unit dimensions:

[length] [time]™!

Corresponding quantities:

Time to travel 1 meter from ¢t = dfv:
3.3ns

Time to travel 1 kilometer from ¢t = d/w:
3.3pus
Computed by Wolfram <) Download page

Figure 1-15. Wolfram|Alpha results for query “what is the speed of light”

19

CHAPTER 1 BACKGROUND

Process Overview

So we understand what data visualization is and have a high-level understanding of the
history of it and an idea of the current landscape. We're beginning to get an inkling about
how we can start to use this in our world. We know some of the tools that are available
to us to facilitate the analysis and creation of our charts. Now let’s look at the process
involved.

Creating data visualizations involves four core steps:

1. Identify a problem.
2. Gather the data.

3. Analyze the data.
4. Visualize the data.

Let’s walk through each step in the process and re-create one of the previous charts
to demonstrate the process.

Identify a Problem

The very first step is to identify a problem we want to solve. This can be almost
anything—from something as profound and wide reaching as figuring out why your bug
backlog doesn’t seem to go down and stay down to seeing what feature releases over a
given period in time caused the most production incidents and why.

For our example, let’s re-create Figure 1-5 and try to quantify the interest in data
visualization over time as represented by the number of New York Times articles on the

subject.

Gather Data

We have an idea of what we want to investigate, so let’s dig in. If you are trying to solve

a problem or tell a story around your own product, you would of course start with your
own data—maybe your Apache logs, maybe your bug backlog, maybe exports from your
project tracking software.

20

CHAPTER 1 BACKGROUND

Note If you are focusing on gathering metrics around your product and you don’t
already have data handy, you need to invest in instrumentation. There are many
ways to do this, usually by putting logging in your code. At the very least, you

want to log error states and monitor those, but you may want to expand the scope
of what you track to include for debugging purposes while still respecting both
your user’s privacy and your company’s privacy policy. In my book, Pro JavaScript
Performance: Monitoring and Visualization, | explore ways to track and visualize
web and runtime performance.

One important aspect of data gathering is deciding which format your data should
be in (if you're lucky) or discovering which format your data is available in. We'll next be
looking at some of the common data formats in use today.

JSON is an acronym that stands for JavaScript Object Notation. As you probably
know, it is essentially a way to send data as serialized JavaScript objects. We format JSON
as follows:

[object]{
[attribute]: [value],
[method] : function(){},
[array]: [item, item]

Another way to transfer data is in XML format. XML has an expected syntax, in which
elements can have attributes, which have values, values are always in quotes, and every
element must have a closing element. XML looks like this:

<parent attribute="value">
<child attribute="value">node data</child>
</parent>

Generally, we can expect APIs (or application programing interfaces) to return XML
or JSON to us, and our preference is usually JSON because as we can see it is a much
more lightweight option just in sheer amount of characters used.

21

CHAPTER 1 BACKGROUND

But if we are exporting data from an application, it most likely will be in the form
of a comma-separated value file, or CSV. A CSV is exactly what it sounds like: values
separated by commas or some other sort of delimiter:

valuel,value2,value3
value4,value5,value6

For our example, we’'ll use the New York Times API (application programming
interface) tool (free registration required), available at http://prototype.nytimes.com/
gst/apitool/index.html. The APItool exposes all the APIs that the New York Times
makes available, including the Article Search API, the Campaign Finance API, and the
Movie Review API. All we need to do is select the APIs button, then choose Article Search
API button from choices presented, Choose the /articlesearch.json path, type in our
search query or the phrase that we want to search for, and click “Make Request”.

This queries the API and returns the data to us, formatted as JSON. We can see the
results in Figure 1-16.

{E} Deve]operg Home APl Cowd-19Data GetStarted jon@lomwestiallcom ~
Article Search DOWNLOAD SPEC m
ARTICLE SEARCH s .
GET /articlesearch.json Try this API
Overview
Search for NYT articles by keywords, filters and facets.
PATHS Request parameters
Jforticlesearch.json C5) begin_date
COMPONENTS HTTP request
end date
Schemay httpe://api.nytimes.com/sve/search/v2/articlesearch.json
Article
Byiine

(P, Query Parameters

Keyword Begin_date string

Mutimedia malches ~\d{8}5
Person

Begin date (e.g. 20120107)
ond_date string

Home APls Tenms of Service: Brarding

Figure 1-16. The NY Times API tool

We can then copy and paste the returned JSON data to our own file, or we could go
the extra step to get an API key so that we can query the API from our own applications.

22

http://prototype.nytimes.com/gst/apitool/index.html
http://prototype.nytimes.com/gst/apitool/index.html

CHAPTER 1 BACKGROUND

For the sake of our example, we will save the JSON data to a file that we will name
jsNYTimesData.txt. The contents of the file will be structured like so:

{
"offset": "0",
"results": [
{
"body": "BODY COPY",
"byline": "By AUTHOR",
"date": "20121011",
"title": "TITLE",
“url”: "http:\/\/ www.nytimes.com/foo.html "
b A
"body": "BODY COPY",
"byline": "By AUTHOR",
"date": "20121021",
"title": "TITLE",
“url”: "http:\/\/ www.nytimes.com/bar.html "
}
1,
"tokens": [
"JavaScript"
1,
"total": 2
}

Looking at the high-level JSON structure, we see an attribute named offset, an
array named results, an array named tokens, and another attribute named total. The
offset variable is for pagination (what page full of results we are starting with). The
total variable is just what it sounds like: the number of results that are returned for our
query. It's the results array that we really care about; it is an array of objects, each of
which corresponds to an article.

The article objects have attributes named body, byline, date, title, and url.

We now have data that we can begin to look at. That takes us to our next step in the

process, analyzing our data.

23

CHAPTER 1 BACKGROUND

DATA SCRUBBING

There is often a hidden step here, one that anyone who’s dealt with data knows about:
scrubbing the data. Often the data is either not formatted exactly as we need it or, in even
worse cases, it is dirty or incomplete.

In the best-case scenario in which your data just needs to be reformatted or even
concatenated, go ahead and do that, but be sure to not lose the integrity of the data.

Dirty data has fields out of order, fields with obviously bad information in them—think dashes
in ZIP codes—or gaps in the data. If your data is dirty, you have several choices:

e You could drop the rows in question, but that can harm the integrity of the
data—a good example is if you are creating a histogram, removing rows could
change the distribution and change what your results will be.

e The better alternative is to reach out to whoever administers the source of your
data and try and get a better version if it exists.

Whatever the case, if data is dirty or it just needs to be reformatted to be able to be imported
into R, expect to have to scrub your data at some point before you begin your analysis.

Analyze Data

Having data is great, but what does it mean? We determine it through analysis.

Analysis is the most crucial piece of creating data visualizations. It’s only through
analysis that we can understand our data, and it is only through understanding it that we
can craft our story to share with others.

To begin analysis, let’s import our data into R. Don’t worry if you aren’t completely
fluent in R; we do a deep dive into the language in the next chapter. If you aren’t
familiar with R yet, don’t worry about coding along with the following examples: just
follow along to get an idea of what is happening and return to these examples after
reading Chapters 3 and 4.

24

CHAPTER 1 BACKGROUND

Because our data is JSON, let’s use an R package called rjson. This will allow us to
read in and parse JSON with the fromJSON() function:

install.packages("rjson")
library(rjson)
json data <- fromJSON(paste(readLines("jsNYTimesData.txt"), collapse=""))

This is great, except the data is read in as pure text, including the date information.
We can’t extract information from text because obviously text has no contextual meaning
outside of being raw characters. So we need to iterate through the data and parse it to
more meaningful types.

Let’s create a data frame (an array-like data type specific to R that we talk about next
chapter), loop through our json_data object, and parse year, month, and day parts out of
the date attribute. Let’s also parse the author name out of the byline and check to make
sure that if the author’s name isn’t present, we substitute the empty value with the string
"unknown".

df <- data.frame()
for(n in json data$response$docs){
year <-substr(n$pub_date, 0, 4)
month <- substr(n$pub _date, 6, 7)
day <- substr(n$pub_date, 9, 10)
author <- substr(n$byline$original, 4, 30)
title <- n$headline$main
if(length(author) < 1){
author <- "unknown"

}

Next, we can reassemble the date into a MM/DD/YYYY formatted string and convert
it to a date object:

datestamp <-paste(month, "/", day, "/", year, sep="")
datestamp <- as.Date(datestamp,"%m/%d/%Y")

25

CHAPTER 1 BACKGROUND

And finally, before we leave the loop, we should add this newly parsed author and
date information to a temporary row and add that row to our new data frame:

newrow <- data.frame(datestamp, author, title,
stringsAsFactors=FALSE, check.rows=FALSE)
df <- rbind(df, newrow)
}
rownames (df) <- df$datestamp
Our complete loop should look like the following:
df <- data.frame()
for(n in json_data$response$docs){
year <-substr(n$pub_date, 0, 4)
month <- substr(n$pub date, 6, 7)
day <- substr(n$pub_date, 9, 10)
author <- substr(n$byline$original, 4, 30)
title <- n$headline$main
if(length(author) < 1){
author <- "unknown"
}
datestamp <-paste(month, "/", day, "/", year, sep="")
datestamp <- as.Date(datestamp,"%m/%d/%Y")
newrow <- data.frame(datestamp, author, title,
stringsAsFactors=FALSE, check.rows=FALSE)
df <- rbind(df, newrow)

}
rownames (df) <- df$datestamp

Note that our example assumes that the data set returned has unique date values.
If you get errors with this, you may need to scrub your returned data set to purge any
duplicate rows. Also be mindful that the New York Times API may change over time.
Between revisions of this book, the API tool changed various titles (e.g., “title” became
“headline”). If this code doesn’t appear to work, you'll want to read through the JSON
data to see if, perhaps, they've pulled a switch again!

Once our data frame is populated, we can start to do some analysis on the data. Let’s
start out by pulling just the year from every entry and quickly making a stem and leaf plot
to see the shape of the data.

26

CHAPTER 1

BACKGROUND

Note John Tukey created the stem and leaf plot in his seminal work, Exploratory
Data Analysis. Stem and leaf plots are quick, high-level ways to see the shape of
data, much like a histogram. In the stem and leaf plot, we construct the “stem”

column on the left and the “leaf” column on the right. The stem consists of the

most significant unique elements in a result set. The leaf consists of the remainder
of the values associated with each stem. In our stem and leaf plot in the following,
the years are our stem and R shows zeroes for each row associated with a given

year. Something else to note is that often alternating sequential rows are combined
into a single row, in the interest of having a more concise visualization.

First, we will create a new variable to hold the year information:

yearlist <- as.POSIX1t(df$datestamp)$year+1900

If we inspect this variable, we see that it looks something like this:

> yearlist

[1]
2011
[30]
2009
[59]
2002
[88]
1993

[117] 1988 1986 1985 1985 1985 1984 1982 1982 1981

2012
2011
2011
2009
2006
2002
1999
1993

2012
2011
2011
2009
2006
2002
1999
1992

2012
2011
2011
2009
2006
2001
1998
1991

2012
2011
2011
2009
2005
2001
1998
1991

2012
2011
2010
2009
2005
2000
1998
1991

2012
2011
2010
2009
2005
2000
1997
1990

2012
2011
2010
2008
2005
2000
1997
1990

2012
2011
2010
2008
2005
2000
1996
1990

2012
2011
2010
2008
2005
2000
1996
1990

2012
2011
2010
2007
2004
2000
1995
1989

2012
2011
2010
2007
2003
1999
1995
1989

2012
2011
2010
2007
2003
1999
1995
1989

2012
2011
2010
2007
2003
1999
1993
1988

2011
2011
2010
2006
2002
1999
1993
1988

That’s great, that’s exactly what we want: a year to represent every article returned.

Next, let’s create the stem and leaf plot:

> stem(yearlist)

1980
1982
1984
1986
1988

| o

| 00

| 0000

| o

| 000000

27

CHAPTER 1 BACKGROUND

1990 | 0000000

1992 | 00000

1994 | 000

1996 | 0000

1998 | 000000000
2000 | 00000000

2002 | 0000000

2004 | 0000000

2006 | 00000000

2008 | 0000000000
2010 | 000000000000000000000000000000
2012 | 0000000000000

Very interesting. We see a gradual build with some dips in the mid-1990s, another
gradual build with another dip in the mid-2000s, and a strong explosion since 2010 (the
stem and leaf plot groups years together in twos).

Looking at that, my mind starts to envision a story building about a subject growing
in popularity. But what about the authors of these articles? Maybe they are the result of
one or two very interested authors that have quite a bit to say on the subject.

Let’s explore that idea and take a look at the author data that we parsed out. Let’s
look at just the unique authors from our data frame:

> length(unique(df$author))
[1] 81

We see that there are 81 unique authors or combination of authors for these articles!
Just out of curiosity, let’s take a look at the breakdown by author for each article. Let’s
quickly create a bar chart to see the overall shape of the data (the bar chart is shown in
Figure 1-17):

plot(table(df$author), axes=FALSE)

28

CHAPTER 1 BACKGROUND

{HIEHEEEHEEE IIIIIHI‘I‘IIIIIIHIII

Figure 1-17. Bar chart of number of articles by author to quickly visualize

We remove the x- and y-axes to allow ourselves to focus just on the shape of the data
without worrying too much about the granular details. From the shape, we can see a
large number of bars with the same value; these are authors who have written a single
article. The higher bars are authors who have written multiple articles. Essentially each
bar is a unique author, and the height of the bar indicates the number of articles they
have written. We can see that although there are roughly five standout contributors, most
authors have average one article.

Note that we just created several visualizations as part of our analysis. The two steps
aren’t mutually exclusive; we oftentimes create quick visualizations to facilitate our
own understanding of the data. It’s the intention with which they are created that make
them part of the analysis phase. These visualizations are intended to improve our own
understanding of the data so that we can accurately tell the story in the data.

What we’ve seen in this particular data set tells a story of a subject growing in
popularity, demonstrated by the increasing number of articles (in the stem plot) by a
variety of authors (in the bar plot). Let’s now prepare it for mass consumption.

Note We are not fabricating or inventing this story. Like information
archaeologists, we are sifting through the raw data to uncover the story.

29

CHAPTER 1 BACKGROUND

Visualize Data

Once we've analyzed the data and understand it (and I mean really understand the data
to the point where we are conversant in all the granular details around it), and once
we've seen the story that the data has within, it is time to share that story.

For the current example, we've already crafted a stem and leaf plot as well as a bar
chart as part of our analysis. However, stem and leaf plots are great for analyzing data,
but not so great for messaging out about the findings. It is not immediately obvious
what the context of the numbers in a stem and leaf plot represents. And the bar chart we
created supported the main thesis of the story instead of communicating that thesis.

Since we want to demonstrate the distribution of articles by year, let’s instead use a
histogram to tell the story:

hist(yearlist)

See Figure 1-18 for what this call to the hist() function generates.

Histogram of yearlist

30

25
1

Frequency
15

I I | I I 1 1 1
1980 1985 1990 1995 2000 2005 2010 2015
yearlist

Figure 1-18. Histogram of yearlist

30

CHAPTER 1 BACKGROUND

This is a good start, but let’s refine this further. Let’s color in the bars, give the chart a
meaningful title, and strictly define the range of years:

hist(yearlist, breaks=(1981:2012), freq=TRUE, col="#CCCCCC",
main="Distribution of Articles about Data Visualization\nby the NY Times",
xlab = "Year")

This produces the histogram that we see in Figure 1-5.

Ethics of Data Visualization

Remember Figure 1-3 from the beginning of this chapter where we looked at the
weighted popularity of the search term “Data Visualization”? By constraining the data
to 2006 to 2012, we told a story of a keyword growing in popularity, almost doubling

in popularity over a six-year period. But what if we included more data points in our
sample and extended our view to include 2004? See Figure 1-19 for this expanded time
series chart.

Figure 1-19. Google Trends time series chart with expanded time range. Note that
the additional data points give a greater context and tell a different story

This expanded chart tells a different story: one that describes a dip in popularity
between 2005 and 2009. This expanded chart also demonstrates how easy it is to
misrepresent the truth intentionally or unintentionally with data visualizations.

31

CHAPTER 1 BACKGROUND

Cite Sources

When Playfair first published his Commercial and Political Atlas, one of the biggest
biases he had to battle was the inherent distrust his peers had of charts to accurately
represent data. He tried to overcome this by including data tables in the first two editions
of the book.

Similarly, we should always include our sources when distributing our charts so
that our audience can go back and independently verify the data if they want to. This
is important because we are trying to share information, not hoard it, and we should
encourage others to inspect the data for themselves and be excited about the results.

Be Aware of Visual Cues

A side effect of using charts to function as visual shorthand is that we bring our own
perspective and context to play when we view charts. We are used to certain things, such
as the color red being used to signify danger or flagging for attention or the color green
signifying safety. These color connotations are part of a branch of color theory called
color harmony, and it’s worth at least being aware of what your color choices could be
implying.

When in doubt, get a second opinion. When creating our graphics, we can often
get married to a certain layout or chart choice. This is natural because we have spent
time invested in analyzing and crafting the chart. A fresh, objective set of eyes should
point out unintentional meanings or overly complex designs and make for a more crisp
visualization.

Summary

This chapter took a look at some introductory concepts about data visualization,
from conducting data gathering and exploration to looking at the charts that make up
the visual patterns that define how we communicate with data. We looked a little at
the history of data visualization, from the early beginnings with William Playfair and
Florence Nightingale to modern examples such as xkcd.com.

While we saw a little bit of code in this chapter, in the next chapter we start to dig in
to the tactics of learning R and getting our hands dirty reading in data, shaping data, and

crafting our own visualizations.

32

CHAPTER 2

R Language Primer

In the last chapter, we defined what data visualizations are, looked at a little bit of the
history of the medium, and explored the process for creating them. This chapter takes a
deeper dive into one of the most important tools for creating data visualizations: R.

When creating data visualizations, R is an integral tool for both analyzing data and
creating visualizations. We will use R extensively through the rest of this book, so we had
better level set first.

R is both an environment and a language to run statistical computations and
produce data graphics. It was created by Ross IThaka and Robert Gentleman in 1993
while at the University of Auckland. The R environment is the runtime environment
that you develop and run R in. The R language is the programming language that you
develop in.

Ris the successor to the S language, a statistical programming language that came
out of Bell Labs in 1976.

Getting to Know the R Console

Let’s start by downloading and installing R. R is available from the R Foundation at
www.r-project.org/. See Figure 2-1 for a screenshot of the R Foundation home page.

33
© Tom Barker, Jon Westfall 2022

T. Barker and J. Westfall, Pro Data Visualization Using R and JavaScript,
https://doi.org/10.1007/978-1-4842-7202-2_2

https://doi.org/10.1007/978-1-4842-7202-2_2#DOI
http://www.r-project.org/

CHAPTER 2

[Home]

Download
CRAN

R Project

About R

Logo

Contributors

What's New?

Reporting Bugs
Conferences

Search

Get Involved: Mailing Lists
Developer Pages

R Blog

R Foundation

Foundation
Board
Members
Donors
Donate

Help With R
Getting Help

R LANGUAGE PRIMER

The R Project for Statistical
Computing

Getting Started

R is a free software environment for statistical computing and graphics. It compiles and runs on a wide
variety of UNIX platforms, Windows and MacOS. To download R, please choose your preferred CRAN
mirror.

If you have questions about R like how to download and install the software, or what the license terms
are, please read our answers to frequently asked questions before you send an email.

News

+ R version 4.1.0 (Camp Pontanezen) prerelease versions will appear starting Saturday 2021-04-17.
Final release is scheduled for Tuesday 2021-05-18.

+ R version 4.0.5 (Shake and Throw) has been released on 2021-03-31.

Thanks to the organisers of useR! 2020 for a successful online conference. Recorded tutorials and
talks from the conference are available on the R Consortium YouTube channel.

+ R version 3.6.3 (Holding the Windsock) was released on 2020-02-29.
+ You can support the R Foundation with a renewable subscription as a supporting member

News via Twitter

Mews from the R Foundation

Figure 2-1. Home page of the R Foundation

It is available as a precompiled binary from the Comprehensive R Archive Network

(CRAN) website: http://cran.r-project.org/ (see Figure 2-2). We just select our

operating system and what version of R we want, and we can begin to download.

34

http://cran.r-project.org/

CHAPTER 2 R LANGUAGE PRIMER

The Comprehensive R Archive Network

.Dwnload and Install R

Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most likely want one of
these versions of R:

¢ Download R for Linux
+ Download R for MacOS X
+ Download R for Windows

R is part of many Linux distributions, you should check with your Linux package management system in addition to the link above.
Source Code for all Platforms

‘Windows and Mac users most likely want to download the precompiled binaries listed in the upper box, not the source code. The
sources have to be compiled before you can use them. If you do not know what this means, you probably do not want to do it!

+ The latest release (2012-10-26, Trick or Treat): R-2.15.2 tar.gz, read what's new in the latest version.
+ Sources of R alpha and beta releases (daily snapshots, created only in time periods before a planned release).

¢ Daily snapshots of current patched and development versions are available here. Please read about new features and bug fixes
before filing corresponding feature requests or bug reports.

« Source code of older versions of R is available here.

+ Contributed extension packages

Questions About R

« If you have questions about R like how to download and install the software, or what the license terms are, please read our
answers to frequently asked questions before you send an email.

Figure 2-2. The CRAN website

Once the download is complete, we can run through the installer. See Figure 2-3 for a
screenshot of the R installer for macOS.

35

CHAPTER 2 R LANGUAGE PRIMER

' &
o0 & Install R 4.0.5 for macOS (&

Welcome to the R 4.0.5 for macOS Installer

" This installer will guide you through the steps necessary to
setup R 4.0.5 () for macOS 10.13 (High Sierra) or higher on
your machine.

Licensg

Destinatidh Select
Installatiofl Type
Installati

Summary

"

pa— =
A Go Back Continue

Figure 2-3. R installation on a Mac

Once we finish the installation, we can launch the R application, and we are
presented with the R console, as shown in Figure 2-4.

36

CHAPTER 2 R LANGUAGE PRIMER

@eo0e R Console
By “—j B Bl o @& N O A
& ‘@ ilin] E () — 0
- Qv
R version 4.0.5 (2021-03-31) -- "Shake and Throw"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwinl?.d (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaberative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, "help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
[R.app GUI 1.74 (7958) x86_64-apple-darwinl?.@]
[History restored from /Users/jon/.Rapp.history]

>

Figure 2-4. The R console

The Command Line

The R console is where the magic happens! It is a command-line environment where we
can run R expressions. The best way to get up to speed in R is to script in the console, a
piece at a time, generally to try out what you're trying to do, and tweak it until you get the
results that you want. When you finally have a working example, take the code that does
what you want and save it as an R script file.

R script files are just files that contain pure R and can be run in the console using the
source command:

> source("someRfile.R")

37

CHAPTER 2 R LANGUAGE PRIMER

Looking at the preceding code snippet, we assume that the R script lives in the
current work directory. The way we can see what the current work directory is to use the
getwd() function:

> getwd()
[1] "/Users/tomjbarker"

We can also set the working directory by using the setwd() function. Note that
changes made to the working directory are not persisted across R sessions unless the
session is saved.

> setwd("/Users/tomjbarker/Downloads™)
> getwd()
[1] "/Users/tomjbarker/Downloads"

Command History

The R console stores commands that you enter and you can cycle through previous
commands by pressing the up arrow. Hit the escape button to return to the command
prompt. We can see the history in a separate window pane by clicking the Show/Hide
Command History button at the top of the console. The Show/Hide Command History
button is the rectangle icon with alternating stripes of yellow and green. See Figure 2-5
for the R console with the command history shown.

38

CHAPTER 2 R LANGUAGE PRIMER

I(Q search in History [regex] - ¢ %H) [I
s m——]]
> reod SablaCupn XD i
Vi vz w3 vi Vs V6 v7 ?read.tabe
1 url, doy, date, loadtime, bytes, httprequests, loodtime_repeatview Tread.table
2 http://apress.com, Sun, a1 Jul 2812 14:91:28 +2008,70242,956680,73,3341 read.table("wpo.txt")
3 http://fapress.com, Sun, a1 Jul 2812 14:91:31 +2228,6932,892902, 76,3428 .
A http://apress.com, Sun, 01 ul 2812 14:01:33 40000, 4157504908, 38, 1614 setwd(/Users/tharke000/)
> read.table("wpo.txt")
> read.table(®wpo.txt", header=TRUE)
= t <- read.table("wpo.txt")
> read.toble("wpo.txt®, heoder«TRUE) t R
url. doy. date. loodtime. bytes. httprequests. loodtime_repeatvien -
1 http://epress.com, Sun, 1 Jul 2012 14:01:28 +2000,7242,956680,73,3341 t <- read.table("wpo.txt", header=TRUE} il
2 http://apress.com, Sun, 1 Jul 2812 14:91:31 +2209,6932,892902,76,3428 t e
3 http://opress.com, Sun, 1 o 2z 14:01:33 +9000,4157,534908, 38,1614 colnames(t) v
w
: citation() H
> temptxt <- read.table{"temptext.txt”)
= read.table(™wpo.txt®, header=TRUE) temptxt - |0
z temptxt <- read.table("temptext.txt”, sep i
> t < reod.toble("wpo.txt") temptxt e
>t wpo <- read.table['wpo.txt", headers=TR| | #l
8 :’1 i vz dutw s va - Vs i t“'5 s " vz wpo <- read.table('wpo.txt’, headers=TR
uri, ay . e, Lloootume, es, prequests, oo 1me_repestvien o - T
2 http://opress.com, Sun, 91 Jul 2012 14:01:28 +0008,7042,956880,73,3341 wpo <- read.tableCwpo.txt', header=TRL
3 http:/fopress.com, Sun, [} Jul 2Ma2 14:91:31 +2090,6932,892902,76,3428 wpo
4 http://opress.com, Sun, 91 Jul 2912 14:91:33 +2000,4157,594308,36, 1614 columNames <- c{'resource_id", "dns_loo
> t <= read.toble("wpo.txt”, header=TRUE} resource_log <- read.table("temptext.txt’
>t
url, doy. date. loodtime. bytes. httprequests. loadtime_repeatview resource_log ——
1 http://opress.com, Sun, 1 Jul 2012 14:01:28 +0000,7942, 956680, 73,3341 columNames <- c('resource_id", "dns_loo| | b
2 http://apress.com, Sun, 1 Jul 2812 14:91:31 +2000,6932,892992,76,3428 resource_log <- read.table("temptext.txt’| | 1
3 http://opress.com, Sun, 1 o 22 14:91:33 +2000,4157,504998, 38,1614 resource_log <- read.table(temptext.oct'||| |
> colnames(t) o
[1] "wrl.” “day.” "date.” “loadtime.” resource_log i
[5] “bytes."” “httprequests.” "leodtime_repeatvien” resource log <- read.table("temptext.txt"[3
: . Oewteartey) CuarHsery)
> citation() 2 Cmdrmey) (o)

Figure 2-5. R console with command history shown

Accessing Documentation

To read the R documentation around a specific function or keyword, you simply type a
question mark before the keyword:

> ?setwd

If you want to search the documentation for a specific word or phrase, you can type
two question marks before the search query:

> ?2?"working directory”

This code launches a window that shows search results (see Figure 2-6). The search
result window has a row for each topic that contains the search phrase and has the name
of the help topic, the package that the functionality that the help topic talks about is in,
and a short description for the help topic.

39

CHAPTER 2 R LANGUAGE PRIMER

®00 R Console

eRX 6B M S o)

) (Qv Help Search)]

>
>
>
>

Topic | Packe |)] Description
getwd base Cet or Set Working Directory

>
>
>

v |
»
™

> 77"working directory

Figure 2-6. Help search results window

Packages

Speaking of packages, what are they, exactly? Packages are collections of functions, data
sets, or objects that can be imported into the current session or workspace to extend
what we can do in R. Anyone can make a package and distribute it.

To install a package, we simply type this:

install.packages([package name])

40

CHAPTER 2 R LANGUAGE PRIMER

For example, if we want to install the ggplot2 package—which is a widely used and
very handy charting package—we simply type this into the console:

> install.packages("ggplot2")

We are immediately prompted to choose the mirror location that we want to use,
usually the one closest to our current location. From there, the install begins. We can see
the results in Figure 2-7.

(- (Qx Help Search)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()" or 'licence()' for distribution detoils.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
‘citation()" on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
‘help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

[R.app GUI 1.53 (6335) i1386-apple-darwin9.8.0]
[History restored from /Users/tbarke8@/.Rapp.history]

> install.packages("ggplot2")
--- Please select a CRAN mirror for use in this session ---
also installing the dependency ‘scales’

trying URL 'http://lib.stat.cmu.edu/R/CRAN/bin/macosx/leopard/contrib/2.15/scales_9.2.3.tgz"
Content type 'application/x-gzip' length 169299 bytes (165 Kb)
opened URL

downloaded 165 Kb

trying URL "http://lib.stat.cmu.edu/R/CRAN/bin/macosx/leopard/contrib/2.15/ggplot2_0.9.3.tgz’
Content type 'application/x-gzip' length 2659255 bytes (2.5 Mb)
opened URL

downloaded 2.5 Mb

The downloaded binary packages are in
Svar/folders/2¢c/2cUFYYFcFe@moOQRc3ueGVB62N6/-Tmp-//RtmpaFV(2g/downloaded_packages

Figure 2-7. Installing the ggplot2 package

The zipped up package is downloaded and exploded into our R installation.

41

CHAPTER 2 R LANGUAGE PRIMER

If we want to use a package that we have installed, we must first include it in our
workspace. To do this, we use the 1ibrary() function:

> library(ggplot2)

A list of packages available at the CRAN can be found here: http://cran.r-
project.org/web/packages/available packages by name.html.

To see a list of packages already installed, we can simply call the library() function
with no parameter (depending on your install and your environment, your list of
packages may vary):

> library()
Packages in library '/Library/Frameworks/R.framework/Versions/2.15/
Resources/library':

barcode Barcode distribution plots

base The R Base Package

boot Bootstrap Functions (originally by Angelo
Canty for S)

class Functions for Classification

cluster Cluster Analysis Extended Rousseeuw et al.

codetools Code Analysis Tools for R

colorspace Color Space Manipulation

compiler The R Compiler Package

datasets The R Datasets Package

dichromat Color schemes for dichromats

digest Create cryptographic hash digests of R
objects

foreign Read Data Stored by Minitab, S, SAS, SPSS,
Stata, Systat, dBase,

ggplot2 An implementation of the Grammar of
Graphics

gpairs gpairs: The Generalized Pairs Plot

graphics The R Graphics Package

grDevices The R Graphics Devices and Support for
Colours and Fonts

grid The Grid Graphics Package

42

http://cran.r-project.org/web/packages/available_packages_by_name.html
http://cran.r-project.org/web/packages/available_packages_by_name.html

CHAPTER 2 R LANGUAGE PRIMER

gtable Arrange grobs in tables

KernSmooth Functions for kernel smoothing for Wand &
Jones (1995)

labeling Axis Labeling

lattice Lattice Graphics

mapdata Extra Map Databases

mapproj Map Projections

maps Draw Geographical Maps

Importing Data

So now our environment is downloaded and installed, and we know how to install any
packages that we may need. Now we can begin using R.

The first thing we’ll normally want to do is import your data. There are several ways
to import data, but the most common way is to use the read() function, which has

several flavors:

read.table("[file to read]")
read.csv(["file to read"])

To see this in action, let’s first create a text file named temptext.txt thatis formatted

like so:

134,432,435,313,11
403,200,500,404,33
77,321,90,2002,395

We can read this into a variable that we will name temptxt:
> temptxt <- read.table("temptext.txt")

Notice that as we are assigning value to this variable, we are not using an equal sign
as the assignment operator. We are instead using an arrow <-. That is R’s assignment
operator, although it does also support the equal sign if you are so inclined. But the
standard is the arrow, and all examples that we will show in this book will use the arrow.

43

CHAPTER 2 R LANGUAGE PRIMER
If we print out the temptxt variable, we see that it is structured as follows:

> temptxt

Vi
1 134,432,435,313,11
2 403,200,500,404,33
3 77,321,90,2002,395

We see that our variable is a table-like structure called a data frame, and R has
assigned a column name (V1) and row IDs to our data structure. More on column names
soon.

The read() function has a number of parameters that you can use to refine how the
data is imported and formatted once it is imported.

Using Headers

The header parameter tells R to treat the first line in the external file as containing
header information. The first line then becomes the column names of the data frame.
For example, suppose we have a log file structured like this:

url, day, date, loadtime, bytes, httprequests, loadtime repeatview

http://apress.com , Sun, 01 Jul 2012 14:01:28 +0000,7042,956680,73,3341
http://apress.com , Sun, 01 Jul 2012 14:01:31 +0000,6932,892902,76,3428
http://apress.com , Sun, 01 Jul 2012 14:01:33 +0000,4157,594908,38,1614

We can load it into a variable named wpo like so:

> wpo <- read.table("wpo.txt", header=TRUE, sep=",")
> Wpo
url day date loadtime bytes httprequests loadtime repeatview

1. http://apress.com,Sun,1 Jul 2012 14:01:28
+0000, 7042,955550,73,3191

2. http://apress.com,Sun,1 Jul 2012 14:01:31
+0000,6932,892442,76,3728

3. http://apress.com,Sun,1 Jul 2012 14:01:33
+0000,4157,614908,38,1514

44

http://apress.com
http://apress.com
http://apress.com

CHAPTER 2 R LANGUAGE PRIMER

When we call the colnames () function to see what the column names are for wpo,
we see the following:

> colnames(wpo)
[1] "url" "day" "date" "loadtime"
[5] "bytes" "httprequests” "loadtime repeatview"

Specifying a String Delimiter

The sep attribute tells the read() function what to use as the string delimiter for parsing
the columns in the external data file. In all the examples we’ve looked at so far, commas
are our delimiters (as we explicitly told R in the line that read in wpo), but we could use
instead pipes | or any other character that we want.

Say, for example, that our previous temptxt example used pipes; we would just
update the code to be as follows:

134|432|435|313|11
403|200|500(404|33
77/321|90]2002|395
> temptxt <- read.table("temptext.txt", sep="|")
> temptxt
VI V2 V3 V4 V5

1. 134 432 435 313 11
2. 403 200 500 404 33
3. 77 321 90 2002 395

Oh, notice that? We actually got distinct column names this time (V1, V2, V3, V4, V5).
Before, we didn’t specify a delimiter, so R assumed that each row was one big blob of text
and lumped it into a single column (V1).

Specifying Row Identifiers

The row.names attribute allows us to specify identifiers for our rows. By default, as we've
seen in the previous examples, R uses incrementing numbers as row IDs. Keep in mind
that the row names need to be unique for each row.

45

CHAPTER 2 R LANGUAGE PRIMER

With that in mind, let’s take a look at importing some different log data, which has
performance metrics for unique URLs:

url, day, date, loadtime, bytes, httprequests, loadtime repeatview

http://apress.com, Sun, 01 Jul 2012 14:01:28 +0000,7042,956680,73,3341
http://google.com, Sun, 01 Jul 2012 14:01:31 +0000,6932,892902,76,3428
http://apple.com, Sun, 01 Jul 2012 14:01:33 +0000,4157,594908,38,1614

When we read it in, we’'ll be sure to specify that the data in the url column should be
used as the row name for the data frame:

> wpo <- read.table("wpo.txt", header=TRUE, sep=",", row.names="url")

> wpo
day date loadtime bytes

httprequests loadtime repeatview

http://apress.com Sun 01 Jul 2012 14:01:28 +0000 7042 956680
73 3341

http://google.com Sun 01 Jul 2012 14:01:31 +0000 6932 892902
76 3428

http://apple.com Sun 01 Jul 2012 14:01:33 +0000 4157 594908
38 31614

Using Custom Column Names

And there we go. But what if we want to have column names, but the first line in our file
is not header information? We can use the col.names parameter to specify a vector that
we can use as column names.

Let’s take a look. In this example, we’ll use the pipe-separated text file used
previously:

134]432(435(313]11
403]200(500(404 |33
77/321|90]2002|395

46

CHAPTER 2 R LANGUAGE PRIMER

First, we’ll create a vector named columnNames that will hold the strings that we will
use as the column names:

> columnNames <- c("resource id", "dns_lookup", "cache load", "file size",
"server response")

Then, we’ll read in the data, passing in our vector to the col.names parameter:

> resource_log <- read.table("temptext.txt", sep="|", col.
names=columnNames)

> resource_log

resource_id dns_lookup cache load file size server response

1 134 432 435 313 11
403 200 500 404 33
3 77 321 90 2002 395

Data Structures and Data Types

In the previous examples, we touched on a lot of concepts; we created variables,

including vectors and data frames; but we didn’t talk much about what they are.

Let’s take a step back and look at the data types that R supports and how to use them.
Data types in R are called modes and can be the following:

e Numeric
e Character
e Logical

e Complex
¢ Raw

o List

We can use the mode () function to check the mode of a variable.

47

CHAPTER 2 R LANGUAGE PRIMER

Character and numeric modes correspond to string and number (both integer and
float) data types. Logical modes are Boolean values.

> n <- 122132

> mode(n)

[1] "numeric"

> ¢ <- "test text"
> mode(c)

[1] "character"

> 1 <- TRUE

> mode(1)

[1] "logical"

We can perform string concatenation using the paste() function. We can use the
substr () function to pull characters out of strings. Let’s look at some examples in code.
Usually, I keep a list of directories that I either read data from or write charts to.
Then when I want to reference a new data file that exists in the data directory, I will just

append the new file name to the data directory:

> dataDirectory <- "/Users/tomjbarker/org/data/"

> buglist <- paste(dataDirectory, "bugs.txt", sep="")
> buglist

[1] "/Users/tomjbarker/org/data/bugs.txt"

The paste() function takes N amount of strings and concatenates them together. It
accepts an argument named sep that allows us to specify a string that we can use to be a
delimiter between joined strings. We don’t want anything separating our joined strings
that we pass in an empty string.

If we want to pull characters from a string, we use the substr () function. The
substr () function takes a string to parse, a starting location, and a stopping location. It
returns all the character inclusively from the starting location up to the ending location.
(Remember that in R, lists are not 0 based like most other languages, but instead have a
starting index of 1.)

> substr("test", 1,2)
[1] IIteII

48

CHAPTER 2 R LANGUAGE PRIMER

In the preceding example, we pass in the string “test” and tell the substr () function
to return the first and second characters.

Complex mode is for complex numbers. The raw mode is to store raw byte data.

List data types or modes can be one of three classes: vectors, matrices, or data
frames. If we call mode () for vectors or matrices, they return the mode of the data that
they contain; class () returns the class. If we call mode() on a data frame, it returns the
type list.

> v <- c(1:10)

> mode(v)

[1] "numeric"

> m <- matrix(c(1:10), byrow=TRUE)
> mode(m)

[1] "numeric"

> class(m)

[1] "matrix" "array"

> d <- data.frame(c(1:10))
> mode(d)

[1] "list"

> class(d)

[1] "data.frame"

Note that we just typed 1:10 rather than the whole sequence of numbers between 1
and 10:

v <- ¢(1:10)

Vectors are single-dimensional arrays that can hold only values of a single mode at
a time. It’s when we get to data frames and matrices that R really starts to get interesting.
The next two sections cover those classes.

Data Frames

We saw at the beginning of this chapter that the read() function takes in external data
and saves it as a data frame. Data frames are like arrays in most other loosely typed
languages: they are containers that hold different types of data, referenced by index. The
main thing to realize, though, is that data frames see the data that they contain as rows,
columns, and combinations of the two.

49

CHAPTER 2 R LANGUAGE PRIMER
For example, think of a data frame as formatted as follows:

col col col col col

row [2] [2][2][2][1]
row [1][2][2][1][1]
row [1][2][2][1][1]
row [2][2][2][2][1]

If we try to reference the first index in the preceding data frame as we traditionally
would with an array, say dataframe[1], R would instead return the first column of
data, not the first item. So data frames are referenced by their column and row. So
dataframe[1] returns the first column, and dataframe[, 2] returns the first row.

Let’s demonstrate this in code.

First, let’s create some vectors using the combine function, c(). Remember that
vectors are collections of data all of the same type. The combine function takes a series
of values and combines them into vectors.

> col1 <- c(1,2,3,4,5,6,7,8)
> col2 <- c(1,2,3,4,5,6,7,8)
> col3 <- c(1,2,3,4,5,6,7,8)
> col4 <- c(1,2,3,4,5,6,7,8)

Then, let’s combine these vectors into a data frame:
> df <- data.frame(col1,col2,col3,col4)

Now let’s print the data frame to see the contents and the structure of it:

> df
coll col2 col3 col4g
1 1 1 1

0 N O VT B W N R
0O N O U1 B W N
0O N O L1 W N
0O N OO LT B W N
0O N O U1 B W N

50

CHAPTER 2 R LANGUAGE PRIMER

Notice that it took each vector and made each one a column. Also notice that each
row has an ID; by default, it is a number, but we can override that.
If we reference the first index, we see that the data frame returns the first column:

> df[1]
col1

0O N O U1 B~ W N
0O N O V1 B W N

If we put a comma in front of that 1, we reference the first row:

> df[,1]
(1112345678

So accessing contents of a data frame is done by specifying [column, row].
Matrices work much the same way.

Matrices

Matrices are just like data frames in that they contain rows and columns and can be
referenced by either. The core difference between the two is that data frames can hold
different data types, but matrices can hold only one type of data.

This presents a philosophical difference. Usually, you use data frames to hold data
read in externally, like from a flat file or a database because those are generally of mixed
type. You normally store data in matrices that you want to apply functions to (more on
applying functions to lists in a little bit).

51

CHAPTER 2 R LANGUAGE PRIMER

To create a matrix, we must use the matrix() function, pass in a vector, and tell the
function how to distribute the vector:

e The nrow parameter specifies how many rows the matrix should have.
e The ncol parameter specifies the number of columns.

e The byrow parameter tells R that the contents of the vector should be
distributed by iterating across rows if TRUE or by columns if FALSE.

> content <- c(1,2,3,4,5,6,7,8,9,10)
> ml <- matrix(content, nrow=2, ncol=5, byrow=TRUE)

> ml

[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 6 7 8 9 10
>

Notice that in the previous example the m1 matrix is filled in horizontally, row by row.
In the following example, the m1 matrix is filled in vertically by column:

> content <- c(1,2,3,4,5,6,7,8,9,10)
> ml <- matrix(content, nrow=2, ncol=5, byrow=FALSE)
> ml
[,1] [,2] [,3] [,4] [,5]
[,] 1 3 5 7 9
[2,] 2 4 6 8 10

Remember that instead of manually typing out all the numbers in the previous
content vector, if the numbers are a sequence, we can just type this:

content <- (1:10)

We reference the content in matrices with the square bracket, specifying the row and
column, respectively:

> mi[1,4]
[1] 7

52

CHAPTER 2 R LANGUAGE PRIMER

We can convert a data frame to a matrix if the data frame contains only a single type
of data. To do this, we use the as.matrix() function. Oftentimes, we will do this when
passing a data frame to a plotting function to draw a chart.

> barplot(as.matrix(df))

In the following, we create a data frame called df. We populate the data frame with
ten consecutive numbers. We then use as.matrix() to convert df into a matrix and save
the result into a new variable called m.

> df <- data.frame(1:10)
> df
X1.10

O 60N O LT B W N B
O 60N O U1 B W N -

10 10

> class(df)
[1] "data.frame"

> m <- as.matrix(df)
> class(m)
[1] "matrix

array"

Keep in mind that because they are all the same data type, matrices require less
overhead and are intrinsically more efficient than data frames. If we compare the size
of our matrix m and our data frame df, we see that with just ten items, there is a size
difference.

> object.size(m)
552 bytes
> object.size(df)
776 bytes

53

CHAPTER 2 R LANGUAGE PRIMER

With that said, if we increase the scale of this, the increase in efficiency does not
equally scale. Compare the following:

> big df <- data.frame(1:40000000)
> big m <- matrix(1:40000000)

> object.size(big m)

160000216 bytes

> object.size(big_df)

160000736 bytes

We can see that the first example with the small data set showed that the matrix
was 30 percent smaller in size than the data frame, but at the larger scale in the second
example, the matrix was only .00018 percent smaller than the data frame.

Adding Lists

When combining or adding to data frames or matrices, you generally add either by the
row or the column using rbind() or cbind().

To demonstrate this, let’s add a new row to our data frame df. We'll pass df into
rbind() along with the new row to add to df. The new row contains just one element, the
number 11.

> df <- rbind(df, 11)
> df
X1.10

OW 60N O LT & W N B
W 60N O U1 B W N -

[N
)
[N
[)

54

CHAPTER 2 R LANGUAGE PRIMER

Now let’s add a new column to our matrix m. To do this, we simply pass m into
cbind() as the first parameter; the second parameter is a new matrix that will be
appended to the new column.

> m <- rbind(m, 11)
> m <- cbind(m, matrix(c(50:60), byrow=FALSE))

>m
X1.10

[1,] 1 50
[2,] 2 51
[3,] 3 52
[4,] 4 53
[5,] 5 54
[6,] 6 55
[7,] 7 56
[8,] 8 57
[9,] 9 58
[10,] 10 59
[11,] 11 60

What about vectors, you may ask? Well, let’s look at adding to our content vector.
We simply use the combine function to combine the current vector with a new vector:

> content <- c(1,2,3,4,5,6,7,8,9,10)

> content <- c(content, c(11:20))

> content

[1] 2 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20

Looping Through Lists

As developers who generally work in procedural languages, or at least came up the
ranks using procedural languages (though, in recent years, functional programming
paradigms have become much more mainstream), we're most likely used to looping
through our arrays when we want to process the data within them. This is in contrast to
purely functional languages where we would instead apply a function to our lists, like
the map() function. R supports both paradigms. Let’s first look at how to loop through
our lists.

55

CHAPTER 2 R LANGUAGE PRIMER

The most useful loop that R supports is the for inloop. The basic structure of a for
inloop can be seen here:

> for(i in 1:5){print(i)}

The variable i increments in value each step through the iteration. We can use the
for inloop to step through lists. We can specify a particular column to iterate through,
like the following, in which we loop through the X1.10 column of the data frame df.

> for(n in df$X1.10){ print(n)}

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10
[1] 11

Note that we are accessing the columns of data frames via the dollar sign operator.
The general pattern is [data frame]$[column name].

Applying Functions to Lists

But the way that R really wants to be used is to apply functions to the contents of lists
(see Figure 2-8).

56

Figure 2-8. Apply a function to list elements

We do this in R with the apply() function.
The apply() function takes several parameters:

o Firstis our list.

¢ Next, a number vector to indicate how we apply the function through
the list (1 is for rows, 2 is for columns, and c[1,2] indicates both rows

and columns).

o Lastis the function to apply to the list:

apply([list], [how to apply function], [function to apply])

Let’s look at an example. Let’s make a new matrix that we'll call m. The matrix m will

have ten columns and four rows:

> m <- matrix(c(1:40), byrow=FALSE, ncol=10)

CHAPTER 2 R LANGUAGE PRIMER

element

element

element

element

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

>m

[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12

13
14
15
16

17
18
19
20

21
22
23
24

25
26
27
28

29
30
31
32

33
34
35
36

37
38
39
40

57

CHAPTER 2 R LANGUAGE PRIMER

Now say we wanted to increment every number in the m matrix. We could simply use

apply() as follows:

> apply(m, 2, function(x) x <- x + 1)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 2 6 10 14 18 22 26 30 34 38
[2,] 3 7 11 15 19 23 27 31 35 39
[3,] 4 8 12 16 20 24 28 32 36 40
[4,] 5 9 13 17 21 25 29 33 37 41

Do you see what we did there? We passed in m, we specified that we wanted to apply
the function across the columns, and finally we passed in an anonymous function. The
function accepts a parameter that we called x. The parameter X is a reference to the
current matrix element. From there, we just increment the value of x by 1.

OK, say we wanted to do something slightly more interesting, such as zeroing out all
the even numbers in the matrix. We could do the following:

> apply(m,c(1,2),function(x){if((x %% 2) == 0) x <- 0 else x <- x})
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 5 9 13 17 21 25 29 33 37
[2,] 0 0 0 0 0 0 0 0 0 0
[3,] 3 7 11 15 19 23 27 31 35 39
[4,] o o O o O o o0 o0 o 0

For the sake of clarity, let’s break out that function that we are applying. We simply
check to see whether the current element is even by checking to see whether it has a
remainder when divided by two. If it is, we set it to zero; if it isn’t, we set it to itself:

function(x){
if((x %% 2) == 0)
X <-0
else
X <- X
}

58

CHAPTER 2 R LANGUAGE PRIMER

Functions

Speaking of functions, the syntax for creating functions in R is much like most other
languages. We use the function keyword, give the function a name, have open and
closed parentheses where we specify arguments, and wrap the body of the function in
curly braces:

function [function name]([argument])

{
[body of function]

Something interesting that R allows is the . . . argument (sometimes called the dots
argument). This allows us to pass in a variable number of parameters into a function.
Within the function, we can convert the . .. argument into a list and iterate over the list
to retrieve the values within:

> offset <- function (...){
for(i in list(...)){

print(i)
}
}
> offset(23,11)
[1] 23
[1] 12

We can even store values of different data types (modes) in the . .. argument:

> offset("test value", 12, 100, "19ANM")
[1] "test value"

[1] 12

[

[1] "19ANM"

R uses lexical scoping. This means that when we call a function and try to reference
variables that are not defined inside the local scope of the function, the R interpreter
looks for those variables in the workspace or scope in which the function was created. If
the R interpreter cannot find those variables in that scope, it looks in the parent of that
scope.

59

CHAPTER 2 R LANGUAGE PRIMER

If we create a function A within function B, the creation scope of function A is
function B. For example, see the following code snippet:

> X <- 10

> wrapper <- function(y){
X <- 99
c<- function(y){

print(x + y)

}
return(c)

}

> t <- wrapper()

> t(1)

[1] 100

> X

[1] 10

We created a variable x in the global space and gave it a value of 10. We created
a function, named it wrapper, and had it accept an argument named y. Within the
wrapper () function, we created another variable named x and gave it a value of 99. We
also created a function named c. The function wrapper () passes the argument y into
the function c(), and the c() function outputs the value of x added to y. Finally, the
wrapper () function returns the c() function.

We created a variable t and set it to the returned value of the wrapper () function,
which is the function c(). When we run the t() function and pass in a value of 1, we see
that it outputs 100 because it is referencing the variable x from the function wrapper ().

Being able to reach into the scope of a function that has executed is called a closure.

But, you may ask, how can we be sure that we are executing the returned function
and not rerunning wrapper () each time? R has a very nice feature where if you type in
the name of a function without the parentheses, the interpreter will output the body of
the function.

60

CHAPTER 2 R LANGUAGE PRIMER

When we do this, we are in fact referencing the returned function and using a closure
to reference the x variable:

>t
function(y){
print(x + y)
}

<environment: 0x17f1d4c4>

Summary

In this chapter, we downloaded and installed R. We explored the command line, went
over data types, and got up and running importing into the R environment data for
analysis. We looked at lists, how to create them, add to them, loop through them, and to
apply functions to elements in a list.

We looked at functions, talked about lexical scope, and saw how to create
closures in R.

Next chapter, we'll take a deeper dive into R, look at objects, get our feet wet with
statistical analysis in R, and explore creating R Markdown documents for distribution
over the Web.

61

CHAPTER 3

A Deeper Dive into R

The last chapter explored some introductory concepts in R, from using the console to
importing data. We installed packages and discussed data types, including different list
types. We finished up by talking about functions and creating closures.

This chapter will look at object-oriented concepts in R, explore concepts in statistical
analysis, and finally see how R can be incorporated into R Markdown for real-time
distribution.

Object-Oriented Programming in R

R supports two different systems for creating objects: the S3 and S4 methods. S3 is the
default way that objects are handled in R. We've been using and making S3 objects with
everything that we’ve done so far. S4 is a newer way to create objects in R that has more
built-in validation, but more overhead. Let’s take a look at both methods.

OK, so traditional, class-based, object-oriented design is characterized by creating
classes that are the blueprint for instantiated objects (see Figure 3-1).

class

=)

object object

Figure 3-1. The matrix class is used to create the variables m1 and m2, both
matrices

63
© Tom Barker, Jon Westfall 2022

T. Barker and J. Westfall, Pro Data Visualization Using R and JavaScript,
https://doi.org/10.1007/978-1-4842-7202-2_3

https://doi.org/10.1007/978-1-4842-7202-2_3#DOI

CHAPTER 3 A DEEPER DIVE INTO R

At avery high level, in traditional object-oriented languages, classes can extend other
classes to inherit the parent class’ behavior, and classes can also implement interfaces,
which are contracts defining what the public signature of the object should be. See
Figure 3-2 for an example of this, in which we create an IUser interface that describes
what the public interface should be for any user type class, and a BaseUser class that
implements the interface and provides a base functionality. In some languages, we
might make BaseUser an abstract class, a class that can be extended but not directly
instantiated. The User and SuperUser classes extend BaseClass and customize the
existing functionality for their own purposes.

BaseUser IUser
login) = f---—-=----- »{ login()
createPlaylist createPlaylist()

<<implements>>

<<extends>> <<extends>>
User SuperUser
login() login()
createPlaylist() createPlaylist()
editPermissions()

Figure 3-2. An IUser interface implemented by a superclass BaseUser that the
subclasses User and SuperUser extend

There also exists the concept of polymorphism, in which we can change functionality
via the inheritance chain. Specifically, we would inherit a function from a base class but
override it, keep the signature (the function name, the type and amount of parameters
it accepts, and the type of data that it returns) the same, but change what the function
does. Compare overriding a function to the contrasting concept of overloading a
function, in which the function would have the same name but a different signature and
functionality.

S3 Classes

S3, so called because it was first implemented in version 3 of the S language, uses a
concept called generic functions. Everything in R is an object, and each object has
a string property called class that signifies what the object is. There is no validation

64

CHAPTER 3 A DEEPER DIVE INTO R

around it, and we can overwrite the class property ad hoc. That’s the main problem
with S3—the lack of validation. If you ever had an esoteric error message returned when
trying to use a function, you probably experienced the repercussions of this lack of
validation firsthand. The error message was probably generated not from R detecting
that an incorrect type had been passed in, but from the function trying to execute with
what was passed in and failing at some step along the way.

See the following code, in which we create a matrix and change its class to be a
vector:

> m <- matrix(c(1:10), nrow=2)
>m

[,1] [,2] [L3]
[,] 1 3 5 7 9
[2,] 2 4 6 8 10
> class(m) <- "vector"

>m

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
attr(,"class")
[1] "vector"

Generic functions are objects that check the class property of objects passed into
them and exhibit different behavior based on that attribute. It’s a nice way to implement
polymorphism. We can see the methods that a generic function uses by passing the
generic function to the methods () function. The following code shows the methods of
the plot() generic function:

> methods(plot)

[1] plot.acf* plot.data.frame* plot.decomposed.ts*
plot.default plot.dendrogram*

[6] plot.density plot.ecdf plot.factor*
plot.formula* plot.function

[11] plot.hclust* plot.histogram* plot.HoltWinters*
plot.isoreg* plot.1m

[16] plot.medpolish* plot.mlm plot.ppr*
plot.prcomp* plot.princomp*

65

CHAPTER 3 A DEEPER DIVE INTO R

[21] plot.profile.nls* plot.spec plot.stepfun
plot.stl* plot.table*
[26] plot.ts lot.tskernel* lot.TukeyHSD
P P p y

Non-visible functions are asterisked

Notice that within the generic plot() function is a myriad of methods to handle all
the different types of data that could be passed to it, such as plot.data. frame for when
we pass a data frame to plot(); or if we want to plot a TukeyHSD object plot(), plot.
TukeyHSD is ready for us.

Note Type ?TukeyHSD for more information on this object.

Now that you know how S3 object-oriented concepts work in R, let’s see how to
create our own custom S3 objects and generic functions.

An S3 class is a list of properties and functions with an attribute named class. The
class attribute tells generic functions how to treat objects that implement a particular
class. Let’s create an example using the UserClass idea from Figure 3-2:

> tom <- list(userid = "tbarker", password = "password123",
playlist=c(12,332,45))
> class(tom) <- "user"

We can inspect our new object by using the attributes() function, which tells us
the properties that the object has as well as its class:

> attributes(tom)

$names

[1] "userid" "password" "playlist"
$class

[1] "user"

66

CHAPTER 3 A DEEPER DIVE INTO R

Now to create generic functions that we can use with our new class, start by creating
a function that will handle only our user object; then generalize it so any class can use it.
It will be the createPlaylist() function, and it will accept the user on which to perform
the operation and a playlist to set. The syntax for thisis [function name].[class
name].Note that we access the properties of S3 objects using the dollar sign.

>createPlaylist.user <- function(user, playlist=NULL){
user$playlist <- playlist
return(user)

Note that while you type directly into the console, R enables you to span several lines
without executing your input until you complete an expression. After your expression is
complete, it will be interpreted. If you want to execute several expressions at once, you
can copy and paste into the command line.

Let’s test it to make sure it works as desired. It should set the playlist property of
the passed-in object to the vector that is passed in:

> tom <- createPlaylist.user(tom, c(11,12))
> tom

$userid

[1] "tbarker"

$password

[1] "password123"

$playlist

[1] 11 12

attr(,"class")

[1] "user"

Excellent! Now let’s generalize the createPlaylist() function to be a generic
function. To do this, we just create a function named createPlaylist and have it accept
an object and a value. Within our function, we use the UseMethod() function to delegate
functionality to our class-specific createPlaylist() function: createPlaylist.user

67

CHAPTER 3 A DEEPER DIVE INTO R

The UseMethod() function is the core of generic functions: it evaluates the object,
determines its class, and dispatches to the correct class-specific function:

> createPlaylist <- function(object, value)

{
UseMethod("createPlaylist", object)

Now let’s try it out to see whether it worked:

> tom <- createPlaylist(tom, c(21,31))
> tom

$userid

[1] "tbarker"

$password

[1] "password123"

$playlist

[1] 21 31

attr(,"class")

[1] "user"

Excellent!

S4 Classes

Let’s look at S4 objects. Remember that the main complaint about S3 is the lack of
validation. S4 addresses this lack by having overhead built into the class structure. Let’s
take a look.

First, we'll create the user class. We do this with the setClass() function.

o The first parameter in the setClass() function is a string that
signifies the name of the class that we are creating.

e The next parameter is called representation, and it is a list of named
properties.

68

CHAPTER 3 A DEEPER DIVE INTO R

setClass("user",

representation(userid="character"”,
password="character",
playlist="vector"

We can test it by creating a new object from this class. We use the new() function to
create a new instance of the class:

> lynn <- new("user", userid="lynn", password="test", playlist=c(1,2))
> lynn

An object of class "user"

Slot "userid":

[1] "lynn"

Slot "password":

[1] "test"

Slot "playlist":

[1] 1 2

Very nice. Note that for S4 objects, we use the @ symbol to reference properties of
objects:

> lynn@playlist
[1] 1 2

> class(lynn)
[1] "user"
attr(, "package")
[1] ".GlobalEnv

Let’s create a generic function for this class by using the setMethod() function. We
simply pass in the function name, the class name, and then an anonymous function that
will serve as the generic function:

> setMethod("createPlaylist", "user", function(object, value){
object@playlist <- value
return(object)

1)

69

CHAPTER 3 A DEEPER DIVE INTO R

Creating a generic function from function 'createPlaylist' in the global
environment

[1] "createPlaylist”

>

Let’s try it out:

> lynn <- createPlaylist(lynn, c(1001, 400))
> lynn

An object of class "user"

Slot "userid":

[1] Illynn"
Slot "password":
[1] "test"

Slot "playlist":
[1] 1001 400

Excellent!

Although some prefer the simplicity and flexibility of the S3 way, some prefer the
structure of the S4 method; the choice of S3 or $4 objects is purely one of personal
preference. My own preference is for the simplicity of S3, and that is what we will be
using for the remainder of the book. Google, in its R Style Guide available at https://
google.github.io/styleguide/Rguide.html, mirrors my own feelings about S3,
saying “Use S3 objects and methods unless there is a strong reason to use S4 objects or
methods.”

Statistical Analysis with Descriptive Metrics in R

Now let’s take a look at some concepts in statistical analysis and how to implement
them in R. You might remember most of the concepts covered in this chapter from an
introductory statistics class from college; they are the base concepts needed to begin to
think about and discuss your data.

First, let’s get some data on which we’ll perform statistical analysis. R comes
preloaded with a number of data sets that we can use as sample data. To see a list
of available data sets with your install, simply type data() at the console. You'll be
presented with the screen that you see in Figure 3-3.

70

https://google.github.io/styleguide/Rguide.html
https://google.github.io/styleguide/Rguide.html

Dato sets in package ‘datasets’:

AirPassengers
Blsales
Blsales.lead (Blsales)
BOD

02
Chickieight
DNase
EuStockMarkets
Formaldehyde
HairEyeColor
HarmanZ3. cor
Harman?74.cor
Indometh
InsectSprays
JohnsonJohnson
LakeHuron
LifeCycleSavings
Loblolly

Nile

Orange
OrchardSprays
PlantGrowth
Puromycin
Seatbelts
Theoph
Titanic
ToothGrowth
UCBAdmissions
UKDriverDeaths
UKgas
USAccDeaths
USArrests
USJudgeRatings
USPersonalExpenditure
VADeaths
Witusage
WorldPhones
ability.cov
aeirmiles
airquality
anscombe
attenu
attitude

CHAPTER 3 A DEEPER DIVE INTO R

Q~ Help search

Monthly Airline Passenger Numbers 1949-1968

Sales Data with Leading Indicator

Sales Data with Leading Indicator

Biochemical Oxygen Demand

Carbon Dioxide Uptake in Grass Plants

Weight versus age of chicks on different diets

Elisa assay of DNase

Daily Closing Prices of Major European Stock Indices, 1991-1998
Determination of Formaldehyde

Hair and Eye Color of Statistics Students

Harman Example 2.3

Harman Example 7.4

Pharmacokinetics of Indomethacin

Effectiveness of Insect Sprays

Quarterly Earnings per Johnson & Johnson Share

Level of Lake Huron 1875-1972

Intercountry Life-Cycle Savings Data

Growth of Loblolly pine trees

Flow of the River Nile

Growth of Orange Trees

Potency of Orchard Sprays

Results from an Experiment on Plant Growth

Reaction Velocity of an Enzymatic Reaction

Road Casualties in Great Britoin 1969-84
Pharmacokinetics of Theophylline

Survival of passengers on the Titanic

The Effect of Vitamin C on Tooth Growth in Guinea Pigs
Student Admissions at UC Berkeley

Road Casualties in Great Britain 1969-84

UK Quarterly Gas Consumption

Accidental Deaths in the US 1973-1978

Violent Crime Rates by US State

Lawyers' Ratings of State Judges in the US Superior Court
Personal Expenditure Date

Death Rates in Virginia (194@)

Internet Usage per Minute

The World's Telephones

Ability and Intelligence Tests

Passenger Miles on Commerciel US Airlines, 1937-196@
New York Air Quality Measurements

Anscombe's Quartet of 'Identical' Simple Linear Regressions
The Joyner-Boore Attenuation Data

The Chatterjee-Price Attitude Data

Figure 3-3. Available data sets in R

To see the contents of a data set, you can call it by name in the console. Let’s take a

look at the USArrests data set, which we’ll use for the next few topics.

> USArrests

Murder Assault

Alabama
Alaska
Arizona
Arkansas
California
Colorado

13.2
10.0
8.1
8.8
9.0
7.9

UrbanPop Rape

236 58 21.2
263 48 44.5
294 80 31.0
190 50 19.5
276 91 40.6
204 78 38.7

71

CHAPTER 3 A DEEPER DIVE INTO R

Connecticut
Delaware
Florida
Georgia
Hawaii

Idaho
I1linois
Indiana

Towa

Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Minnesota
Mississippi
Missouri
Montana
Nebraska
Nevada

New Hampshire
New Jersey
New Mexico
New York
North Carolina
North Dakota
Ohio

Oklahoma
Oregon
Pennsylvania
Rhode Island
South Carolina
South Dakota

72

15.
17.

10.

15.

11.

12.

16.

12.

11.
11.
13.

14.
3.

w o B~ OO0 N O ~N N O O N N N U Ul w
co B~ WO OVW OO P P P MW OO RFP NP PP WP PANODNMDNPODWRPSEPBB OW

110
238
335
211

46
120
249
113

56
115
109
249

83
300
149
255

72
259
178
109
102
252

57
159
285
254
337

45
120
151
159
106
174
279

86

77
72
80
60
83
54
83
65
57
66
52
66
51
67
85
74
66
44
70
53
62
81
56
89
70
86
45
44
75
68
67
72
87
48
45

11.
15.
31.
25.
20.
14.
24,
21.
11.
18.
16.
22.

27.
16.
35.
14.
17.
28.
16.
16.
46.

18.
32.
26.
16.

21.
20.
29.
14.

22.
12.

coO U1 W W W O & W KL B B 00Ul O UVl &N P O PRFEP W O0WWOKLN WO WO O N DN O VW 0 -

Tennessee 13.2
Texas 12.7
Utah 3.2
Vermont 2.2
Virginia 8.5
Washington 4.0
West Virginia 5.7
Wisconsin 2.6
Wyoming 6.8
>

188
201
120
48
156
145
81
53
161

59
80
80
32
63
73
39
66
60

26.
25.
22.
11.
20.
26.

9.
10.
15.

Y 0 W N N N W Ul W

CHAPTER 3 A DEEPER DIVE INTO R

The first function in R that we'll look at is the summary () function, which accepts an

object and returns the following key descriptive metrics, grouped by column:

¢ Minimum value

¢ Maximum value

e Median for numbers and frequency for strings

¢ Mean
o First quartile

e Third quartile

Let’s run the USArrests data set through the summary () function:

> summary (USArrests)

Murder Assault
Min. : 0.800 Min. : 45.0
1st Qu.: 4.075 1st Qu.:109.0
Median : 7.250 Median :159.0
Mean : 7.788 Mean :170.8
3rd Qu.:11.250 3rd Qu.:249.0
Max. :17.400 Max. :337.0

Let’s look at each of these metrics in detail, as well as the standard deviation.

UrbanPop

Min.

1st Qu.:
Median

Mea

3rd Qu.:

n

Max.

:32.
54.
166.
:65.
77.
:91.

00
50
00
54
75
00

Rape
Min.
1st Qu.:
Median
Mean
3rd Qu.:
Max.

7.
15.
:20.
121,
26.
:46.

30
07
10
23
18
00

73

CHAPTER 3 A DEEPER DIVE INTO R

Median and Mean

Note that the median is the number that is the middle value in a data set, quite literally
the number that has the same amount of numbers greater and less than itself in the data
set. If our data set looks like the following, the median is 3:

1, 2, 3, 4,5

But notice that it’s easy to find the median when there are an odd number of items in
a data set. Suppose that there is an even number of items in a data set, as follows:

1, 2, 3, 4, 5, 6

In this case, we take the middle pair, 3 and 4, and get the average of those two
numbers. The median is 3.5.

Why does the median matter? When you look at a data set, there are usually outliers
at either end of the spectrum, values that are much higher or much lower than the rest
of the data set. Gathering the median value excludes these outliers, giving a much more
realistic view of the average values.

Contrast this idea with the mean, which is simply the sum of the values in a data
set divided by the number of items. The values include the outliers, so the mean can be
skewed by having significant outliers and really represent the full data set.

For example, look at the following data set:

1, 2, 3, 4, 30
The median is still 3 for this data set, but the mean is 8, because of this:

median = [1,2] 3 [4,30]
mean = 1+ 2+ 3 + 4 + 30 =40
40 / 5 =8

Quartiles

The median is the center of the data set, which means that the median is the second
quartile. Quartiles are the points that divide a data set into four even sections. We can
use the quantile() function to pull just the quartiles from our data set.

> quantile(USArrests$Murder)
0% 25% 50% 75% 100%
0.800 4.075 7.250 11.250 17.400

74

CHAPTER 3 A DEEPER DIVE INTO R

The summary () function simply returns the quartiles, as well as the minimum,
maximum, and mean values. Here are the summary () results for comparison, with the
previous quartiles highlighted:

> summary (USArrests)
Murder Assault UrbanPop Rape

Min. : 0.800 Min. : 45.0 Min. :32.00 Min. : 7.30
ist Qu.: 4.075 1st Qu.:109.0 1st Qu.:54.50 1st Qu.:15.07
Median : 7.250 Median :159.0 Median :66.00 Median :20.10
Mean : 7.788 Mean :170.8 Mean :65.54 Mean :21.23
3rd Qu.:11.250 3rd Qu.:249.0 3rd Qu.:77.75 3rd Qu.:26.18
Max. :17.400 Max. :337.0 Max. :91.00 Max. :46.00

Standard Deviation

Speaking of the idea of the mean, there is also the idea that data has a normal
distribution or that data is normally densely clustered around the mean with lighter
groupings above and below the mean. This is usually demonstrated with a bell curve, in
which the mean is the top of the curve and the outliers are distributed on either end of it
(see Figure 3-4).

0.4 4

0.3 4

0.2

0.1+

0.0+

Figure 3-4. The bell curve of a normal distribution

75

CHAPTER 3 A DEEPER DIVE INTO R

Standard deviation is a unit of measurement that describes the average of how far
apart the data is distributed from the mean, so we can detail how far each data point is
from the mean in terms of standard deviations.

In R, we can determine the standard deviation using the sd() function. The sd()
function expects a vector of numeric values:

> sd(USArrests$Murder)
[1] 4.35551

If we want to gather the standard deviation for a matrix, we can use the sapply()
function to apply the sd() function, like so:

> sapply(USArrests, sd)
Murder Assault UrbanPop Rape murderRank
4.355510 83.337661 14.474763 9.366385 14.574930

RStudio IDE

If you prefer to develop in an integrated development environment (IDE) instead of at
the command line, you can use a free product called RStudio IDE. The RStudio IDE is
made by the RStudio company and is much more than just an IDE (as you will soon see).
The RStudio company was founded by JJ Allaire, creator of ColdFusion. RStudio IDE is
available for download at www.rstudio.com/ide/ (see Figure 3-5 for a screenshot of the
download page).

76

http://www.rstudio.com/ide/

CHAPTER 3 A DEEPER DIVE INTO R

DOWNLOAD SUPPORT Docs COMMUNITY e
e Studio

Products v Solutions v Customers Resources ~ About ~ Pricing

RStudio

Take control of your R code

RStudio is an integrated development environment (IDE) fer R. It includes a console, syntax-highlighting editor

that supports direct code execution, as well as tools for plotting, history, debugging and workspace
management.

RStudio is available in open source and commercial editions and runs on the desktop (Windows, Mac, and

Linux) or in a browser connected to RStudio Server or RStudio Server Pro (Debian/Ubuntu, Red Hat/Cent0S,
and SUSE Linux).

Figure 3-5. RStudio IDE home page

Note You should install the RStudio IDE now because you will use it in the
remainder of this chapter.

After installation, the IDE is split into four panes (see Figure 3-6).

77

CHAPTER 3 A DEEPER DIVE INTO R

800 : |
e-ra-lgg K project (None) =
0 ryTimes R® « | geoplecorreiane = — (71| Workspace Mittary e
H Disevrceonsave | O - ~#@un 9% | SSource = Cfloads [Sawe= |t import Daassets | 3 Clear All

1 livrery(rjson) Data

Z googlecorrelote 438 obs. of 101 vorichles

3 json_file < "/DotcVisBook/dsta/jsNITiresbate. txt™

4 gtrend_file «- “/OotoVisSooksdatosgtrendsbyregion. txt™

5 gtrendcity_file < ~/DotavisSook/sosa/gtrendsbycity. txe”

6 goorrelate_file <- ~, i e/ dora/goog | ecorrelate, cav”

7 trons_goorrelote_file < foetavi (]

8

9 json_doto < from)SON(poste(reodlines(json_file), collopse.
10 gtrend_dets < recd.toblefgtrend_file, hecder-iRUE, sep-",",
11 g ity_data <- reod.tablel, y_file, heoder-TRUE, 5 '
12 georrelate_data <- read. wlate_file, heoder-TRUE, sap=",", row.noses-"Date)
13 trons_goorrelote_doto <- reod.toble(trons_goorrelote_file, heoder=TRUE, sep=",")

14

nemes-“region”y

727 0 (Top LeveD :

Consele
i Files Plots Packages Help =

» trons_goorrelate_dato <- recd, tableCtrons goonrelate file, adersTRUE, sepa-,
23 QoiWewroider @] Celete | Serame | G Mores

Error in resd.table(trons_gcorrelate_file, hoader - TRUE, sep = =,
oaject ‘trons_georrelote file' not found
O 4 Home Teameeath cam

> Yoo "~ DotaVi sBock/datasgoogleccrrelote, cav ™)
Error: bad restore #ile megic maber (“lle oy be corrupted) -- no deta loaded ~ ramg e Madified 0
Ir addition: Merning ressage: L
FALS. Lgcogmcdn e ou! o egIE Timoen. [NES, 0 L1 2002 bugs by_troeaxt 345 bytes Kov 26, 2012, 1:23 BM

Use of sove versions prios to 2 is deprecated ;
» googlecorrelote < recd. cav("~/DotaVisfooksdotasgooglecorrelote. cov™) D] 2012 bugs by US.ov 473 bytes Nov 26, 2012, 256 PM
> View(gocglecorrelote) O 1 2012 bugs by Us.oa 952 byes Nov 26, 2012, Li23 M
> View(googlecorrelata) o : 7 byw e
o Bt 8 O 2002 bugs osslese 7Toyees Now26, 2012, S
Error in recethar(con, 5L, usefytes = TRUE) @ Connot open the connection E 1 2012 _bugs_total.mt 188 bytes Now 26, 2012
In addition: Rorning ressage: © 3 bugfeansrevsregression o 25 byves.
In rescthar(eon, 5L, uselytes = TRUE) : 2 —

cannct open cotpressed File "/Users/tberke20ds.RData’, probeble recsan "Na such file or directory’ =, bugsbycoreceam. oo 78 byms

) bugsbysate.oa LYK

Figure 3-6. RStudio Interface

The upper-left pane is the R script file in which we edit our R source code. The
bottom-left pane is the R command line. The upper-right side pane holds the command
history as well as all the objects in our current workspace. The bottom-right pane is split

into tabs that can show the following:

o Contents of the file system for the current working directory
o Plots or charts that have been generated
e Current packages installed

e Rhelp pages

Although it is great to have everything that you need in one place, here is where

things become really interesting.

R Markdown

In version 0.96 of RStudio, the team announced support for R Markdown using the knitr
package. We can now embed R code into markdown documents that can get interpreted
by knitr into HTML (HyperText Markup Language). But it gets even better.

78

CHAPTER 3 A DEEPER DIVE INTO R

The RStudio company also makes a product called RPubs that allows users to create
accounts and host their R Markdown files for distribution over the Web.

Note Markdown is a plain text markup language created by John Gruber and
Aaron Swartz. In markdown, you can use simple and lightweight text encodings to
signify formatting. The markdown document is read and interpreted and an HTML
file is output.

A quick overview of markdown syntax follows:

header 1

##theader 3

#it##theader 4

italic

bold

[link text]([URL])

Ifalt text]([path to image])

The great thing about R Markdown is that we can embed R code within our
markdown document. We embed R using three tick marks and the letter r in curly
braces:

)
[R code]

[NENEN

We need three things to begin creating R Markdown (.rmd) documents:
e R
e R Studio IDE version 0.96 or higher
e The knitr package
The knitr package is used to reformat R into several different output formats,

including HTML, markdown, or even plain text.

79

CHAPTER 3 A DEEPER DIVE INTO R

Note Information about the knitr package is available at http://yihui.name/
knitr/.

Because you already have R and RStudio IDE installed, you will first install knitr. R
Studio IDE has a nice interface to install packages: simply go to the Tools file menu, and
click Install Packages. You should see the pop-up that is shown in Figure 3-7, in which
you can specify the package name (R Studio IDE has a nice type ahead here for package
discovery) and what library to install to.

Install Packages

Install from: ? Configuring Repositories
[Repository (CRAN))

ag
Packages (separate multiple with space or comma): De

knitr latz

Install to Library:
[/Library/Frameworks/R.framework/Versions/2.15 /Resc ¢ |

™ Install dependencies

Install Cancel

[

Figure 3-7. Installing the knitr package

After knitr is installed, you need to close and relaunch RStudio IDE. You then go to
the File menu, and choose File » New, in which you should see a number of options,
including R Markdown. If you choose R Markdown, and choose the default option of
“Document” and “HTML" as the Default Output Format, you get a new file with the
template shown in Figure 3-8.

80

http://yihui.name/knitr/
http://yihui.name/knitr/

CHAPTER 3 A DEEPER DIVE INTO R

2 Untitled1

O -0 - HBE A Goto hie/function * Adding -

H ¥ Q| ek ~ . E nsert - +Run =

kitle: "Untitled”
cutput: html_decument

{r setup, include=FALSE} b
kmitr: topts_chunkiset{echa = THUED

= #2 R Markdomwn

This is an R Morkdown document. Markdown is o sieple formatting syntax for
outhoring HTML, POF, ond M5 Word documents. For more details on using R
Markdown see <http://rmarkdown. rstudio. coms.

When you click the **Knit** button a document will be generated that includes
both content as well as the cutput of any embedded R code chunks within the

document, You can embed on R code chunk like this:

16~ " "{r cors}

17 summary(cers)

317 B uniited =

Console Terminal Jobs
~{OneDrive/Work /R Projects (Blank/

R 15 free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
| Type 'license()' or 'licence()’ for distribution details.

Matural lenguage support but running in an English locale
R is a colloborative project with mony contributors.
Type 'contributors()’ for more inforeation and
"citation()' on how to cite R or R packoges in publications.
Type '"demo()' for some demos, "help()’ for on-line help, or
“help.start()" for an HTML browser interfoce to help,
Type 'q()' to quit R,

=

=k

R Maridown =

-

[{m]

History G
[™ Import Dataset =+ | &

& Global Environment =

Tutorial

Environment is empty

Files Plots Packages Help Viewer

D Mew Folder D Delete = Rename

£ Mare -

& Home - OneDrive © Work * R Projects © Blank

& Name
t.
& Blank Rproj

Size

205E

Modifled

May 6, 2021, 2:15 PM

Figure 3-8. RStudio IDE

The R Markdown template has the following code:

title: "Untitled"
output: html_document

"{r setup, include=FALSE}
knitr::opts chunk$set(echo = TRUE)

[NENEN

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for
authoring HTML, PDF, and MS Word documents. For more details on using R
Markdown, see <http://rmarkdown.rstudio.com>.

81

CHAPTER 3 A DEEPER DIVE INTO R

When you click the **Knit** button, a document will be generated that
includes both content and the output of any embedded R code chunks within
the document. You can embed an R code chunk like this:

NENEN

{r cars}
summary(cars)

ENENEN

Including Plots
You can also embed plots, for example:

* " {r pressure, echo=FALSE}
plot(pressure)

[NENEN

Note that the “echo = FALSE™ parameter was added to the code chunk to
prevent printing of the R code that generated the plot.

This is the template, and when you click the Knit button, you will see the output
shown in Figure 3-9.

[BN] ~[OneDrive/ J ji i html
Untited.html | 2 Open in Browser fn “E- Publish -
R Markdown
Thiz is an R 1 document. M 1is a simple formatting syntax for autharing HTML, PCF, and MS Ward documents. For more detalls

on using R Markdown see hittp://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embeddad R code chunks
within the document. You can embed an R code chunk like this:

SUFDATy (Cars)

'] speed dist
#¥ Min. : 4.0 Min. r 2.00
lst Qu.:12.0 Ist Qu.: 26.00
Median :15.0 Median : 36.00
Mean :15.4 Mean £ 42.98
3rd Qu.:1%.0 ird Qu.: 56.00
#4 Max. :25.0 Max. :120.00

Including Plots

‘You can alsc embed plots, for example:

Figure 3-9. HTML output of RMarkdown template

82

CHAPTER 3 A DEEPER DIVE INTO R

Did you notice the Publish button at the top of Figure 3-9? That is how we push our R
Markdown file to RPubs for hosting and distribution over the Web.

RPubs

RPubs is a free web publishing platform for R Markdown files, provided by RStudio (the
company). You can create a free account by visiting www. rpubs . com. Figure 3-10 shows a
screenshot of the RPubs home page.

PUbS brought to you by RStudio Signin Register

Easy web publishing from R

Write R Markdown documents in RStudio.

Share them here on RPubs. (It's free, and couldn't be simpler!)

Recently Published

P s s G L]

Figure 3-10. RPubs home page

Just click the Register button, and fill out the form to create your free account.
RPubs is fantastic; it’s a platform in which we can post our R Markdown documents for
distribution.

83

http://www.rpubs.com

CHAPTER 3 A DEEPER DIVE INTO R

Caution Be aware that every file you put up on RPubs is publicly available, so be
sure not to put any sensitive or proprietary information in it. If you don’t want to put
your R Markdown files where they are available for the whole world to see, you can
instead click the Save As button right next to the Publish button to save the file as
regular HTML.

After you click the Publish button, you are prompted to log in with your RPubs
account. After logging in, you will be directed to the Document Details page, as seen in
Figure 3-11.

tombarker

Document Details — Step 2 of 2

Title Chapter 3 example

...

Description This is the R Markdown template from RStudio IDE

Slug http://rpubs.comftomijbarker/

Figure 3-11. Publishing to RPubs

After filling out the document details, a title for your document, and a description,
you will be directed to your document hosted in RPubs. See Figure 3-12 for the
template from Figure 3-9 hosted in RPubs and available publicly here: www.xpubs.com/
tomjbarker/3370.

84

http://www.rpubs.com/tomjbarker/3370
http://www.rpubs.com/tomjbarker/3370

CHAPTER 3 A DEEPER DIVE INTO R

Title

This Is an R Markdown document. Markdown is a simple formatting syntax for authoring web pages (click the MD toolbar bufton for help on Markdown),

When you click the Knit HTML button a web page will be generated that includes both content as well as the oufput of any embedded R code chunks within the document. You can embed an R code chunk like
this:

summary(cars

== speed dist
=2 Min. t 4,0 Min, T 2
ax 1st Qu.:12.0 1st Qu.: 26
&= Median :15.0 Median : 36
Mean :15.4 Mean : 43
#2 ird Qu.:19.0 3rd Qu.: 56

Max., 125.0 Max. 110

You can also embed plots, for example:

plot(cars

EdiDeinds Dolote hapter 3 example v Tom Bar ast updated te i Hide Toolars

Figure 3-12. RMarkdown template published to RPubs

This is a powerful distribution method for R documents and for communicating
data visualizations. In the coming chapters, we will put all the completed R charts up on
RPubs for public consumption.

Summary

This chapter explored some deeper concepts in R, from the different models of object-
oriented design available to how to do statistical analysis with R. We even looked at
how to use RMarkdown and RPubs to make data visualizations in R available for public
distribution.

In the next chapter, we will look at D3, a JavaScript library that enables us to analyze
and visualize data within the browser and add interactivity to visualizations.

85

CHAPTER 4

Data Visualization with D3

Thus far, when we have been talking about technologies used to create data
visualizations, we’ve been talking about R. We've spent the last two chapters exploring
the R environment and learning about the command line. We covered introductory
topics in the R language, ranging from data types, functions, and object-oriented
programming. We even talked about how to publish our R documents to the Web
using RPubs.

This chapter we will look at a JavaScript library called D3 that is used to create
interactive data visualizations. First is a very quick primer on HTML, CSS, and JavaScript,
the supporting languages of D3, to level set. Then we’ll dig into D3 and explore how to
make some of the more commonly used charts in D3.

Preliminary Concepts

D3 is a JavaScript library. Specifically, that means it is written in JavaScript and
embedded in an HTML page. We can reference the objects and functions in D3 in our
own JavaScript code. So let’s start at the beginning. The purpose of the next section is not
to take a deep dive into HTML CSS and JavaScript; there are plenty of other resources for
that, including Foundation Website Creation that I helped to co-write. The purpose is to
have a very high-level recap of concepts that we will deal with directly with D3. If you are
already familiar with HTML, CSS, and JavaScript, you can skip down to the “History of
D3” section of this chapter.

87
© Tom Barker, Jon Westfall 2022

T. Barker and J. Westfall, Pro Data Visualization Using R and JavaScript,
https://doi.org/10.1007/978-1-4842-7202-2_4

https://doi.org/10.1007/978-1-4842-7202-2_4#DOI

CHAPTER 4 DATA VISUALIZATION WITH D3

HTML

HTML is a markup language; in fact, it stands for HyperText Markup Language. It is a
presentation language, made up of elements that signify formatting and layout. Elements
contain attributes that have values that specify details about the element, tags, and
content. To explain, let’s look at our basic HTML skeletal structure that we will use for
most of our examples in this chapter:

<!DOCTYPE html>
<html>
<head></head>
<body></body>
</html>

Let’s start at the first line. That is the doctype that tells the browser’s render engine
what rule set to use. Browsers can support multiple versions of HTML, and each version
has a slightly different rule set. The doctype specified here is the HTML5 doctype.
Another example of a doctype is this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"" http://www.w3.org/TR/
xhtml11/DTD/xhtml11.dtd ">

This is the doctype for XHTML 1.1. Notice that it specifies the URL of the document
type definition (.dtd). If we were to read the plain text at the URL, we would see that it is
a specification for how to parse HTML tags. The W3C maintains a list of doctypes here:
www.w3.0rg/QA/2002/04/valid-dtd-1list.html.

MODERN BROWSER ARCHITECTURE

Modern browsers are composed of modular pieces that encapsulate very specific functionality.
These modules can also be licensed out and embedded in other applications:

e They have a Ul layer that handles drawing the user interface of the browser, like
the window, the status bar, and the back button.

e They have render engines to parse, tokenize, and paint the HTML.

88

http://www.w3.org/QA/2002/04/valid-dtd-list.html

CHAPTER 4 DATA VISUALIZATION WITH D3

e They have a network layer to handle the network operations involved in
retrieving the HTML and all the assets on the page.

e They have a JavaScript engine to interpret and execute the JavaScript in
the page.

See Figure 4-1 for a representation of this architecture.

Ul Layer

Rendering Engine

Network JavaScript
Layer Interpreter

Figure 4-1. Modern Browser Architecture

Back to the skeletal HTML structure. The next line is the <html> tag; this is the
root-level tag for the document and holds every other HTML element that we will use.
Notice that there is a closing tag on the last line of the document.

Next is the <head> tag, which is a container that generally holds information that
is not displayed on the page (e.g., the title and meta-information). After the <head> tag
is the <body> tag, which is a container that holds all the HTML elements that will be
displayed on the page, for example, paragraphs:

<p> this is a paragraph </p>
or links:

link text or image here

89

CHAPTER 4 DATA VISUALIZATION WITH D3
or images:

When it comes to D3, most of the JavaScript that we will be writing will be in the
body section, and most of the CSS will be in the head section.

CSS

CSS stands for Cascading Style Sheets and is what is used to style the HTML elements
on a web page. Style sheets are either contained in <style> tags or linked externally via
<link> tags and are comprised of style rules and selectors. Selectors target the element
on the web page to style, and the style rule defines what styles to apply. Let’s look at an
example:

<style>

p{
color: #AAAAAA;

}
</style>

In the preceding code snippet, the style sheet is in a style tag. The p is the
selector that tells the browser to target every paragraph tag on the web page. The
style rule is wrapped in curly braces and is made up of properties and values.

This case sets the color of the text in all the paragraphs to #AAAAAA which is the
hexadecimal value of a light gray.

Selectors are where the real nuance of CSS is. This is relevant to us because D3 also
uses CSS selectors to target elements. Similar to how S3/S4 classes can inherit from
each other in R, we can get very specific with selectors and target elements by class or
id, or we can use pseudo-classes to target abstract concepts such as when an element
is hovered over. We can target ancestors and descendants of elements, up and down
the DOM.

Note The DOM stands for the Document Object Model and is the application
programming interface (API) that allows JavaScript to interact with the HTML
elements that are on a web page.

90

CHAPTER 4 DATA VISUALIZATION WITH D3

.classname{

/* style sheet for a class*/
}

#id{

/*style sheet for an id*/

}

element:pseudo-class{

}

SVG

The next introductory concept for D3 is SVG, which stands for Scalable Vector Graphics.
SVG, which is a standardized way to create vector graphics in the browser, is what D3
uses to create data visualizations. The core functionality that we are concerned about in
SVG is the capability to draw shapes and text and integrate them into the DOM so that
our shapes can be scripted via JavaScript.

Note Vector graphics are graphics that are created using points and lines that
are mathematically calculated and displayed by the rendering engine. Contrast
this idea with bitmap or raster graphics in which the pixel display is prerendered.
Vectors, as they are simply equations, tend to scale better and are smaller.
However, they lack the depth that bitmap or raster graphics will have.

SVG is essentially its own markup language with its own doctype. We can write SVG
in external . svg files or include the SVG tags directly in our HTML. Writing the SVG tags
in our HTML page allows us to interact with our shapes via JavaScript.

SVG has support for predefined shapes as well as the capability to draw lines. The
predefined shapes in SVG are these:

e <rect> to draw rectangles
o <circle> to draw circles
o <ellipse> to draw ellipses

e <line> to draw lines; also <polyline> and <polygon> to draw lines
with multiple points

91

CHAPTER 4 DATA VISUALIZATION WITH D3

Let’s look at some code examples. If we will write our SVG into an HTML document,
we use the <svg> tag to wrap our shapes. The <svg> takes the xmlns and version
attributes. The xmlns attribute should be the path to the SVG namespace, and the
version is obviously the version of SVG:

<svg xmlns=" http://www.w3.0rg/2000/svg " version="1.1">
</svg>

If we are writing stand-alone . svg files, we include the full doctype and xml tags to
the page file:

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" " http://www.w3.0rg/
Graphics/SVG/1.1/DTD/svgll.dtd ">

<svg xmlns=" http://www.w3.0rg/2000/svg '
</svg>

version="1.1">

Either way, we create our shapes within the <svg> tag. Let’s create some sample
shapes in our <svg> tag:

<svg xmlns=" http://www.w3.0rg/2000/svg " version="1.1" viewBox="0 0 500 500">
<rect x="10" y="10" width="10" height="100" stroke="#000000"
Till="#AAAAAA" />
<circle cx="70" cy="50" r="40" stroke="#000000" fill="#AAAAAA" />
<ellipse cx="230" cy="60" rx="100" ry="50" stroke="#000000"
Till="#AAAAAA" />

</svg>

This code produces the shapes shown in Figure 4-2.

Figure 4-2. A rectangle, circle, and ellipse drawn in SVG

92

CHAPTER 4 DATA VISUALIZATION WITH D3

Notice that we assign x and y coordinates for all the shapes—in the case of the circle
and ellipse cx and cy coordinates—as well as fill color and stroke colors. This is just
the smallest taste; we can also create gradients and filters and then apply them to our
shapes. We can also create text to use in our SVG drawings using the <text> tag.

Let’s take a look. We'll update the preceding SVG code to add text labels for each shape:

<svg xmlns=" http://www.w3.0rg/2000/svg version="1.1" viewBox="0 0
500 500">
<rect x="80" y="20" width="10" height="100" stroke="#000000"
fill="#AAAAAA" />
<text x="55" y="145" fill="#000000">rectangle</text>
<circle cx="170" cy="60" r="40" stroke="#000000" fill="#AAAAAA" />
<text x="150" y="145" fill="#000000">circle</text>
<ellipse cx="330" cy="70" rx="100" ry="50" stroke="#000000"
fill="#AAAAAA" />
<text x="295" y="145" fill="#000000">ellipse</text>

</svg>

This code creates the drawing shown in Figure 4-3.

rectangle circle ellipse

Figure 4-3. SVG shapes with text labels

Now we can start to see the possibilities of creating data visualizations with just these
fundamental building blocks. Because D3 is a JavaScript library, and most of the work we
will be doing with D3 will be in JavaScript, let’s next take a high-level look at JavaScript
before we delve into D3.

93

CHAPTER 4 DATA VISUALIZATION WITH D3

JavaScript

JavaScript is the scripting language of the Web. JavaScript can be included in an HTML
document either by placing script tags inline in the document or by linking to an
external JavaScript document:

<script>

//javascript goes here

</script>

<script src="pathto.js"></script>

JavaScript can be used to process information, react to events, and interact with the
DOM. In JavaScript, we create variables using the var keyword.

var foo = "bar";

Note that if we do not use the var keyword, the variable that we create is assigned to
the global scope. We don’t want to do this because our globally scoped variable could
then be overwritten by any other code on our web page.

JavaScript looks much like other C-based languages in that each expression ends in
a semicolon, and blocks of code such as function and conditional bodies are wrapped in
curly braces.

Conditional statements are generally if-else statements formatted as follows:

if([condition]){
[code to execute]
telse{
[code to execute]

Functions are formatted like so:

function [function name] ([arguments]){
[code to execute]

We access DOM elements in JavaScript usually by referencing the element by its id
attribute. We do this like using the getElementById() function:

var header = document.getElementById("header");

94

CHAPTER 4 DATA VISUALIZATION WITH D3

The preceding code stores a reference to the element on the web page that has an
ID of header. We can then update properties of this element, including adding new
elements or removing the element altogether.

Objects in JavaScript are generally object literals, meaning that we craft them at
runtime, composed of properties and methods. We create object literals like so:

var myObj = {
myProp: 20,
myfunc: function(){
}

}

We reference properties and methods of objects using the dot operator:
myObj.myprop = 10;

See, that was fast and painless. OK, on to D3!

History of D3

D3 stands for Data-Driven Documents and is a JavaScript library used to create
interactive data visualizations. The seed of the idea that would become D3 started in
2009 as Protovis, created by Mike Bostock, Vadim Ogievetsky, and Jeff Heer while they
were with the Stanford Visualization Group.

Note Information on the Stanford Visualization Group can be found at its website:
http://vis.stanford.edu/. The original white paper for Protovis can be
found at http://vis.stanford.edu/papers/protovis.

Protovis was a JavaScript library that provided an interface for creating different
types of visualizations. The root namespace was pv, and it provided an API for
creating bars and dots and areas, among other things. Like D3, Protovis used SVG to
create these shapes, but unlike D3, it wrapped the SVG calls in its own proprietary
nomenclature.

95

http://vis.stanford.edu/
http://vis.stanford.edu/papers/protovis

CHAPTER 4 DATA VISUALIZATION WITH D3

Protovis was abandoned in 2011, so its creators could take their learning and instead
create and focus on D3. There is a difference in philosophy between Protovis and D3.
Where Protovis aimed to provide wrapped functionality for creating data visualizations,
D3 instead facilitates and streamlines the creation of data visualization by working with
existing web standards and nomenclature. In D3, we create rectangles and circles in
SVG, just facilitated by the syntactic sugar of D3.

Using D3

The first thing we need to do to get working with D3 is to go to the D3 website,
http://d3js.org/, and download the latest version (see Figure 4-4).

Overview Examples Documentation Source

Data—Drlven Documents

=

o

D3.js is a JavaScript library for manipulating documents based on data. D3 helps you bring data to Sea more examples.
life using HTML, SVG and CSS. D3's emphasis on web standards gives you the full capabilities of

modem browsers without tying yourself to a proprietary framework, combining powerful visualization

components and a data-driven approach to DOM manipulation.

Download the latest version here:

o d3.v3.zip

Figure 4-4. D3 home page

After that is installed, you can set up a project.

http://d3js.org/

CHAPTER 4 DATA VISUALIZATION WITH D3

Setting Up a Project
We can include the . js file directly on our page, like so:
<script src="d3.v3.js"></script>

The root namespace is d3; all the commands that we issue from D3 will be using the
d3 object.

Using D3

We use the select() function to target specific elements or the selectAll() function to
target all of a specific element type:

var body = d3.select("body");

The previous line selects the body tag and stores it in a variable named body. We can
then change attributes of the body if we want to or add new elements to the body:

var allParagraphs = d3.select("body").selectAll("p");

The previous line selects the body tag and then selects all the paragraph tags within
the body.

Notice that we chained the two actions together on the second line? We selected the
body and then selected all the paragraphs, both actions chained together. Also note that
we used the CSS selector to specify the element to target.

OK, once we have selected an element, that is now considered our selection and we
can perform actions on that selection. We can select elements within our selection as we
did in the previous example.

We can update attributes of the selection with the attr () function. The attr()
function accepts two parameters: the first is the name of the attribute, and the second is
the value to set the attribute to. Suppose we want to change the background color of the
current document. We can just select the body and set the bgcolor attribute by adding
this to our script block:

<script>
d3.select("body")
.attr("bgcolor", "#000000");
</script>

97

CHAPTER 4 DATA VISUALIZATION WITH D3

Notice in the previous code snippet that we have brought the chained attribute
function call to the next line. We have done this for readability.

The really fun thing with this is that because we’re talking about JavaScript, and
functions are first-class objects in JavaScript, we can pass in a function as the value of an
attribute so that whatever it evaluates to becomes the value that is set:

<script>
d3.select("body")
.attr("bgcolor", function(){
return "#000000";

};

</script>

We can also add elements to our selection using the append() function. The
append() function accepts a tag name as the first parameter. It will create a new element
of the type specified and return that new element as the current selection:

<script>

var svg = d3.select("body")
.append("svg");

</script>

The preceding code creates a new SVG tag in the body of the page and stores that
selection in the variable svg.
Next, let’s re-create the shapes in Figure 4-3 using what we’ve just learned about D3:

<script>

var svg = d3.select("body")
.append("svg")
.attr("width", 800);

var r = svg.append("rect")
.attr("x", 80)
.attr("y", 20)
.attr("height", 100)
.attr("width", 10)
.attr("stroke", "#000000")
.attr("fill", "#AAAAAA");

98

CHAPTER 4 DATA VISUALIZATION WITH D3

var c = svg.append("circle")
.attr("ex", 170)
.attr("cy", 60)
.attr("r", 40)
.attr("stroke", "#000000")
.attr("fill", "#AAAAAA");

var e = svg.append("ellipse")
.attr("ex", 330)
.attr("cy", 70)
.attr("rx", 100)
.attr("ry", 50)
.attr("stroke", "#000000")
.attr("fill", "#AAAAAA");

</script>

For each shape, we append a new element to the SVG element and update the
attributes.

If we compare the two methods, we can see that we just create the SVG element in
D3, just as we do in straight markup. We then create an SVG rectangle, circle, and ellipse
inside the SVG element along with the same attributes that we specified in the SVG
markup. But our D3 example has one very important difference: we now have references
to each element on the page that we can interact with.

Let’s take a look at interactions in D3.

Binding Data

For data visualizations, the most important interaction we have with our SVG shapes
is to bind data to them. This allows us to then reflect that data in the properties of the
shapes.

To bind data, we simply call the data() method of a selection:

<script>

var rect = svg
.append("rect")
.data([1,2,3]);

</script>

99

CHAPTER 4 DATA VISUALIZATION WITH D3

That's fairly straightforward. We can then reference that bound data via anonymous
functions that we pass to our attr() function calls. Let’s take a look at an example.
First, let’s create an array that we will call dataSet. To start to envision how this
will correlate to creating a data visualization, you can think of dataSet as a list of
nonsequential values, maybe test scores for a class or total rainfall for a set of regions:

<script>
var dataSet = [84,62,40,109];
</script>

Next, we will create an SVG element on the page. To do that, we'll select the body and
append an SVG element with a width of 800 pixels. We'll keep a reference to this SVG
element in a variable called svg:

<script>

var svg = d3
.select("body")
.append("svg")
.attr("width", 800);

</script>

Here is where being able to bind data changes things. We will chain together a series
of commands that will create placeholder rectangles in the SVG element based on how
many elements exist in our data array.

We will first use selectAll() to return a reference to all rectangles in the SVG
element. There are none yet, but there will be by the time the chain finishes executing.
Next in the chain, we bind our dataSet variable and call enter (). The enter() function
creates placeholder objects from the bound data. Finally, we call append() to create a
rectangle at each placeholder that enter () created.

<script>

bars = svg
.selectAll("rect")
.data(dataSet)
.enter()
.append("rect");

</script>

100

CHAPTER 4 DATA VISUALIZATION WITH D3

If we looked at our work so far in a browser, we would see a blank page, but if we
looked at the HTML in a web inspector such as Firebug, we would see the SVG element
along with the rectangles created, but with no styling or attributes specified yet, similar
to Figure 4-5.

W€ D §|' Console | HTML v_: CSS Script DOM Net Cookies YSlow

<> = Edit . body < html

¥V chtml=
P chead>

="
<script>

V¥ <svg width="800">
<rect>
<rect>
<rect>
<rect>
</svg>
</body>
</html=>

Figure 4-5. Firebug Inspection interface

Next, let’s style the rectangles that we just made. We have a reference to all the
rectangles in the variable bars, so let’s chain together a bunch of attr () calls to style the
rectangles. While we're at it, let’s use our bound data to size the height of the bars.

<script>

bars
.attr("width", 15)
.attr("height", function(x){return x;})
.attr("x", function(x){return x + 40;})
.attr("fill", "#AAAAAA")
.attr("stroke", "#000000");

</script>

The full source code looks like the following and makes the shapes that we see in
Figure 4-6:

<script>
var dataSet = [84,62,40,109];
var svg = d3

101

CHAPTER 4 DATA VISUALIZATION WITH D3

.select("body")
.append("svg")
.attr("width", 800);
bars = svg
.selectAll("rect")
.data(dataSet)
.enter()
.append("rect");
bars
.attr("width", 15)
.attr("height", function(x){return x;})
Lattr("x", function(x){return x + 40;})
.attr("fill", "#AAAAAA")
.attr("stroke", "#000000");
</script>

Figure 4-6. Styled rectangles for bar chart

Now look in Firebug or your browser’s debugging tools again; you can see the
generated markup, as shown in Figure 4-7.

102

CHAPTER 4 DATA VISUALIZATION WITH D3

w0y & D égi'l Console | HTML~ | €SS Script DOM Net Cookies YSlow

3 | Edit | body < html

¥ <html>
P cheads

Y ——
<script>

v <5vg width=-"800">
<rect width="15" height="84" x="124" fill="#AAAAAA" stroke="#000000">
<rect width="15" height="62" x="102" Fill="#AAAAAA" stroke-"#000000">
<rect width="15" height="40" x="8@" fill-"#AAAAAA" stroke-"#202000">
<rect width="15" height="109" x="149" fill="#AAAAAA" stroke="#000002">

</svg>
</body>
</html>

Figure 4-7. Rectangles shown as SVG source code in Firebug

Now you can really see the beginnings of how we can start to make data
visualizations with D3 by binding data to SVG shapes. Let’s take this concept another
step forward.

Creating a Bar Chart

Our example so far looks a lot like the start of a bar chart in that we have a number of
bars whose heights represent data. Let’s give it some structure.

First, let’s give our SVG container a more concrete width and height. This is
important because the size of the SVG container is what determines the scale we use to
normalize the rest of the chart. And because we will reference this sizing throughout our
code, let’s make sure we abstract these values into their own variables.

We will define a height and width for our SVG container. We'll also create variables
that will hold the minimum and maximum values that we will use on our axes: 0 and 109
(the largest data point), respectively. We'll also define an offset value so we can draw the
SVG container slightly larger than our chart to give the chart margins around it.

<script>
var chartHeight = 460,
chartWidth = 400,

chartMin = 0,
chartMax = 109,
offset = 60

103

CHAPTER 4 DATA VISUALIZATION WITH D3

var svg = d3
.select("body")
.append("svg")
.attr("width", chartwidth)
.attr("height", chartHeight + offset);
</script>

We next need to fix the orientation of our bars. As shown in Figure 4-6, the bars are
drawn from the top down, so that although their heights are accurate, they appear to be
facing down because SVG draws and positions shapes from the top left. So to get them
correctly oriented so the bars look like they are coming up from the bottom of the chart,
let’s add a y attribute to our bars.

The y attribute should be a function that references the data; this function should
subtract the bar height value from the chart height. The returned value from this
function is the value used in the y coordinate.

<script>
bars
.attr("width", 15)
.attr("height", function(x){return x;})
.attr("y", function(x){return (chartHeight - x);})
Lattr("x", function(x){return x;})
.attr("fill", "#AAAAAA")
.attr("stroke", "#000000");
</script>

This flips the bars to the bottom of the SVG element. We can see the results in
Figure 4-8.

104

CHAPTER 4 DATA VISUALIZATION WITH D3

Figure 4-8. Rectangles in bar chart no longer inverted

Now let’s scale the bars to fit the height of the SVG element. To do this, we'll use a
D3 scale() function. The scale() function is used to take a number within a range and
transform it to the equivalent of that number in a different range of numbers, essentially
to scale values to equivalent values.

In this case, we have a number range that signifies the range of values in our dataSet
array, which signify the heights of the bars, and we want to transform these numbers to
equivalent values:

<script>

var yscale = d3.scalelinear()
.domain([chartMin,chartMax])
.range([0, (chartHeight)]);

</script>

Be sure to place this code after the section that declares the chart variables,
preferably right before we declare the “svg” variable. We then just update the height and
y attributes of the bars to use the yscale() function:

<script>

bars
.attr("width", 15)
.attr("height", function(x){ return yscale(x);})
.attr("y", function(x){return (chartHeight - yscale(x));})
.attr("x", function(x){return x;})

105

CHAPTER 4 DATA VISUALIZATION WITH D3

.attr("Fill", "#AAAAAA")
.attr("stroke", "#000000");
</script>

This produces the graphic shown in Figure 4-9.

Figure 4-9. Rectangles for bar chart properly scaled

Very nice! But so far, we've just been placing the bars based on their height instead
of where they lie in the array. Let’s change that to make their array location more
meaningful, so the bars are displayed in the correct order.

106

CHAPTER 4 DATA VISUALIZATION WITH D3

To do that, we just update the x value of the bars. We've seen already that we can
pass in an anonymous function to the value parameter of the attr () function. The first
parameter in our anonymous function is the value of the current element of our array. If
we specify a second parameter in our anonymous function, it will hold the current index
number.

We can then reference that value and offset it to place each bar:

<script>

bars
.attr("width", 15)
.attr("height", function(x){ return yscale(x);})
.attr("y", function(x){return (chartHeight - yscale(x));})
.attr("x", function(x, i){return (i * 20);})
.attr("fill", "#AAAAAA")
.attr("stroke", "#000000");

</script>

This gives us the ordering of the bars shown in Figure 4-10. Just by eyeballing it, we
can tell that the bars are now closer representations of the data in the array—not just the
height but also the height in the order specified in the array.

107

CHAPTER 4 DATA VISUALIZATION WITH D3

Figure 4-10. Rectangles in bar chart ordered to follow the ordering in our data

Now let’s add text labels so that we can better see what values the heights of the bars

are signifying.

We do that by creating SVG text elements in much the same way as creating the
bars. We create text placeholders for every element in our data array and then style the
text elements. You'll notice that the anonymous function that we pass into the x- and
y-attribute calls is almost the same for the text elements as it was for the bars, only offset
so that the text is above and to the center of each bar:

<script>

svg.selectAll("text")
.data(dataSet)
.enter()
.append("text")

.attr("x", function(d, i) { return ((i * 20) + offset/4); })
.attr("y", function(x, i){return (chartHeight - yscale(x) - 24) ;})

.attr("dx", -15/2)
.attr("dy", "1.2em")

108

CHAPTER 4 DATA VISUALIZATION WITH D3

.attr("text-anchor", "middle")

.text(function(d) { return d;})

.attr("fill", "black");
</script>

This code produces the chart shown in Figure 4-11.

109

Figure 4-11. Bar chart with text labels

See the following complete source code:

<html>

<head>

<title></title>

<script src="d3.js"></script>
</head>

<body>

<script>

var dataSet = [84,62,40,109];

109

CHAPTER 4 DATA VISUALIZATION WITH D3

var chartHeight = 460,
chartWidth = 400,
chartMin = 0,
chartMax = 115,
offset = 60;
var yscale = d3.scalelinear()
.domain([chartMin,chartMax])
.range([0, (chartHeight)]);
var svg = d3
.select("body")
.append("svg")
.attr("width", chartwidth)
.attr("height", chartHeight + offset);
bars = svg
.selectAll("rect")
.data(dataSet)
.enter()
.append("rect");
bars
.attr("width", 15)
.attr("height", function(x){ return yscale(x);})
.attr("y", function(x){return (chartHeight - yscale(x));})
.attr("x", function(x, i){return (i * 20);})
.attr("fill", "#AAAAAA")
.attr("stroke", "#000000");
svg.selectAll("text")
.data(dataSet)
.enter()
.append("text")
.attr("x", function(d, i) { return ((i * 20) + offset/4); })
.attr("y", function(x, i){return (chartHeight - yscale(x) - 24) ;})
.attr("dx", -15/2)
.attr("dy", "1.2em")
.attr("text-anchor", "middle")

110

CHAPTER 4 DATA VISUALIZATION WITH D3

.text(function(d) { return d;})
.attr("fill", "black");
</script>
</body>
</html>

And finally, let’s read in our data from external files instead of hard-coding it in
the page.

Loading External Data

First, we'll take the array out of our file and put it in its own external file: sampleData.csv.
The contents of sampleData. csv are simply the following:

84,62,40,109

Next, we will use the d3.text() function to load in sampleData.csv. The way d3.
text () works is that it takes a path to an external file and then assigns it to a variable
(in this case named data). The function receives a parameter that is the contents of the
external file:

<script>
d3.text("sampleData.csv").then((data) => {});
</script>

The catch is that we need the contents of our external file before we can begin doing
any charting on the data. So within the callback function, we will parse up the file and
then wrap all our existing functionality, like so:

<html>

<head>

<title></title>

<script src="d3.js"></script>

</head>

<body>

<script>
d3.text("sampleData.csv").then((data) => {
var dataSet = data.split(",");

111

CHAPTER 4 DATA VISUALIZATION WITH D3

var chartHeight = 460,
chartWidth = 400,
chartMin = 0,
chartMax = 115,
offset = 60;
var yscale = d3.scalelinear()
.domain([chartMin,chartMax])
.range([0, (chartHeight)]);
var svg = d3
.select("body")
.append("svg")
.attr("width", chartwidth)
.attr("height", chartHeight + offset);
bars = svg
.selectAll("rect")
.data(dataSet)
.enter()
.append("rect");
bars
.attr("width", 15)
.attr("height", function(x){ return yscale(x);})
.attr("y", function(x){return (chartHeight - yscale(x));})
.attr("x", function(x, i){return (i * 20);})
.attr("fill", "#AAAAAA")
.attr("stroke", "#000000");
svg.selectAll("text")
.data(dataSet)
.enter()
.append("text")
.attr("x", function(d, i) { return ((i * 20) + offset/4); })
.attr("y", function(x, i){return (chartHeight - yscale(x) - 24) ;})
.attr("dx", -15/2)
.attr("dy", "1.2em")
.attr("text-anchor", "middle")

112

CHAPTER 4 DATA VISUALIZATION WITH D3

.text(function(d) { return d;})
.attr("fill", "black");
9
</script>
</body>
</html>

It's important to note that if you are running this code locally on your computer, as
opposed to on a web server, you will get an error similar to “Cross origin requests are
only supported for HTTP.” This is a security measure that your browser is using in order
to prevent malicious code from running on your local machine. It’s advised to use a local
web server to work around this issue while programming.

Returning to our d3.text() function—CSV files aren’t the only format we can read
in. In fact, d3.text () is only syntactic sugar—a convenience method or a type-specific
wrapper for D3’s implementation of the XMLHttpRequest object d3.xhr ().

For reference, the XMLHttpRequest object is what is used in AJAX transactions to
load content asynchronously from the client side without refreshing the page. In pure
JavaScript, we instantiate the XHR object, pass in a URL to a resource, and the method
to retrieve the resource (GET or POST). We also specify a callback function that will get
invoked when the XHR object is updated. In this function, we can parse up the data and
begin using it. See Figure 4-12 for a high-level diagram of this process.

113

CHAPTER 4 DATA VISUALIZATION WITH D3

JavaScript External Data
Source

I
- .

Instantiate

R XAR

create
call back

> Callback |

HTTP
get/post

Y

HTTP
resonse

[
1
1
]
[
1
1
1
1
1

»i

nl

1

1

e]

A

Parse and process
returned data

Figure 4-12. Sequence diagram of XHR transaction

In D3, the d3.xhr () function is D3’s wrapper for the XMLHttpRequest object. It
works much the same way that we just saw d3.text () work, where we pass in a URL to a
resource and a callback function to execute.

The other type-specific convenience functions that D3 has are d3.csv(), d3.json(),
d3.xml(), and d3.html().

Summary

This chapter explored D3. We started out covering the introductory concepts of HTML,
CSS, SVG, and JavaScript, at least the points that are pertinent to implementing D3. From
there, we delved into D3, looking at introductory concepts like creating our first SVG
shapes to expanding on that idea by making those shapes into a bar graph.

114

CHAPTER 4 DATA VISUALIZATION WITH D3

D3 is a fantastic library for crafting data visualizations. To see the full API
documentation, see https://github.com/mbostock/d3/wiki/API-Reference.

We will return to D3, but first, we will explore some data visualizations that we can
create that have practical application in the world of web development. The first one we
will look at is something that you may have seen in your Google analytics dashboard or
something similar: a data map based on user visits.

115

https://github.com/mbostock/d3/wiki/API-Reference

CHAPTER 5

Visualizing Spatial Data
from Access Logs

In the last chapter, we talked about D3 and looked at concepts from making simple
shapes to creating a bar chart out of those shapes. In the previous two chapters, we took
a deep dive into R. Now that you are familiar with the core technologies that we will be
using, let’s begin looking at examples of how, as web developers, we can create data
visualizations that communicate useful information around our domain.

The first one that we will look at is creating a data map out of our access logs.

What Are Data Maps?

First, let’s level set and make sure that we clearly define a data map. A data map
is a representation of information over a spatial field, a marriage of statistics with
cartography. Data maps are some of the most easily understood and widely used data
visualizations there are because their data is couched in something that we are all
familiar with and use anyway: maps.

Recall the discussion in Chapter 1 of the Cholera map created by Jon Snow in
1854. This is considered one of the earliest examples of a data map, though there are
several notable contemporaries, including several by Charles Minard, an engineer in
nineteenth-century France. He is most widely remembered for his data visualization of
Napoleon'’s invasion of Russia in 1812.

117
© Tom Barker, Jon Westfall 2022

T. Barker and J. Westfall, Pro Data Visualization Using R and JavaScript,
https://doi.org/10.1007/978-1-4842-7202-2_5

https://doi.org/10.1007/978-1-4842-7202-2_5#DOI

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

Minard also created several prominent data maps. Two of his most famous data
maps include the data map demonstrating the source region and percentage of total
cattle consumed in France (see Figure 5-1) and the data map demonstrating the wine
export path and destination from France (see Figure 5-2).

| .
| CARTE FIGURATIVE -
Viandes & Boucherie s

compummies & Fus

| i ‘
Arsze Arbieans
® - N
I *r dae B ‘
o1 Bt .
Azde |
3 |
: R Kia
Yazsr |
@ %
i
s 4
i
° \
- o
A
| Aidoe o
v Fiedn e = i
wrnt 2 iullnrs i s ¥ Sl . R s]
1wl i b b Al ik, 5 i t [g 3 B ; L o P Late
| Py y— | e T . y A
| L Bparieant bnsi 3 ! R e ¥ Iy £ ;
o7 SR { = g
| ot it st inspages, s I O o et i AL f
= Tk mmad rens sy - 1 {) - FERLS g
1 il Oomreinalion sond din wppomies don Yot ansic reds L v
o T . SN s, a0 400t st £ [wa =] . i o ’
| Fonialiie Contetipns dn irussmmsstons o Sovid do e : Zatart Mpas™,
| frms e e ; i Taddew
! T A -
P, 1T Jeit o, i * ;
(7 (,ﬁ-ug? i / % =
{ — { e, SN { = Aok M) X S/
L e e \ i
1 - 7 = 3 4
i _— Hiszes frricina = 5 -
3 Auke f
< g i
e £

Figure 5-1. Early data map from Charles Minard demonstrating source region
and cattle consumption in France

118

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

1 = Lote pems e CaBlean prapbipee.
Cante f-,-‘uo.m».—-u W Frangals coportis pas mec on W64 | [= I)w
D o U O, ot i ok o 4 | 7 A s - -..x._ i
@] Z P
et e e o P o 0l ot I“—q/;' " T ol e |
Srar = % TR s ot e i o e s i f ', [
Ay ke nn..,. * e A 1R N/ i ..c,.,.._ J_-‘::..,... -
SR ' ; Tl s i s it g A-o-nu.l-,“ - s
i - i i bt gu. - et
7 R
Ly L o
AMERIQUE e AN 1 |
A & < 4 ALLEMAGNE | !
KORD . o et 8 — 1 1Y AN .
{ 7 il ¥
4 ¢ { fli1 e
. Ncn : 1 -
3 o . At
o, - i I -
¥ : e Ll '
\ N i IERRRARE VU RS
-.‘\’1»(?- T‘\‘{‘,:__ £ | I° e
R s S
5 =l ~ y
.l 18 i .-—,./ " S
- - ".‘_\
X E—— \
y - f \
L AMERIQUE H -
du - L
T AFRILQUE
sUD \

tl | A\
(JJ» { ; NN
.; ﬁl “\ ¢ AUSTRALIE
i\:' g \\k: :?/I I_ * ’/"‘“"\-\\‘3

Charles Joseph Minard, Tableasx Gra-
phiques et Cartes Figuratives de M. Minard,
1845-1869, a portfolio of his work held by
the Bibliothéque de I'Ecole Nationale des
Ponts et Chaussées, Paris.

Figure 5-2. Data map from Minard demonstrating wine export path and
destination

Today, we see data maps everywhere. They can be informative and artistic
expressions, like the wind map project from Fernanda Viegas and Martin Wattenberg
(see Figure 5-3). Available at http://hint.fm/wind, the wind project demonstrates the

path and force of wind currents over the United States.

119

http://hint.fm/wind

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

October 29, 2012
8:59 pm EST

time of forecast download)

top speed: 45.1 mph
average: 9.4 mph

[Eeees]

L E
-Smph
- 10 mph
_15 mph
E—_ *3:‘} mph

Figure 5-3. Wind map, showing wind speeds by region for the touchdown
of Hurricane Sandy (used with permission of Fernanda Viegas and Martin
Wattenberg)

Data maps can be profound, such as those available at energy.gov that demonstrate
concepts such as energy consumption by state (see Figure 5-4) or even renewable energy

production by state.

120

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

2009 Total Energy
Consumption Per
Person (Millions
of BTUs a Year)

W 150200

Greater than 500

US Averago: 308 milion

2009 ENERGY
CONSUMPTION PER
PERSON

BTUs a Year Source: EIA

nergy Data System

Figure 5-4. Data map depicting energy consumption by state, from energy.gov
(available at http://energy.gov/maps/2009-enerqy-consumption-person)

You've now seen historical and contemporary examples of data maps. In this
chapter, you will look at creating your own data map from web server access logs.

Access Logs

Access logs are records that a web server keeps to track what resources were requested.

Whenever a web page, an image, or any other kind of file is requested from a server, the

server makes a log entry for the request. Each request has certain data points associated

with it, usually information about the requestor of the resource (e.g., IP address and user

agent) and general information such as time of day and what resource was requested.
Let’s look at an access log. A sample entry looks like this:

msnbot-157-55-17-199.search.msn.com - - [18/Jan/2013:13:32:15 -0400] "GET
/robots.txt HTTP/1.1" 404 208 "-" "Mozilla/5.0 (compatible; bingbot/2.0;
+ http://www.bing.com/bingbot.htm)"

121

http://energy.gov/maps/2009-energy-consumption-person

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

This is a snippet from a sample Apache access log. Apache access logs follow the
combined log format, which is an extension of the common log format standard of the
World Wide Web Consortium (W3C). Documentation for the common log format can be
found here:

www.w3.0rg/Daemon/User/Config/Logging.html#common-logfile-format

The common log format defines the following fields, separated by tabs:
o [P address or DNS name of remote host
e Logname of the remote user
e Username of the remote user
e Datestamp

e The request—usually includes the request method and the path to
the resource requested

e HTTP status code returned for the request
o Total file size of the resource requested

The combined log format adds the referrer and user agent fields. The Apache
documentation for the combined log format can be found here:

http://httpd.apache.org/docs/current/logs.html#combined

Note that fields that are not available are represented by a single dash -.
Let’s dissect the previous log entry:

o Thefirstfield is msnbot-157-55-17-199.search.msn.com. Thisis a
DNS name that just happens to have the IP address built into it. We
can’t count on parsing the IP address out of this domain, so for now,
justignore the IP address. When we get to programmatically parsing
the logs, we will use the native PHP function gethostbyname() to
look up the IP addresses for given domain names.

¢ The next two fields, the logname and the user, are empty.

o Nextis the datestamp: [18/Jan/2013:13:32:15 -0400].

122

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

After the datestamp is the request: "GET /robots.txt HTTP/1.1".
If you hadn’t already guessed from the DNS name, this is a bot,
specifically Microsoft’s msnbot replacement: the bingbot. In this
record, the bingbot is requesting the robots. txt file.

Next is the HTTP status of the request: 404. Clearly, there was no
robots.txt file available.

Next is the total payload of the request. Apparently the 404 cost
208 bytes.

Next is a dash to signify that the referrer was empty.

The last is the useragent: "Mozilla/5.0 (compatible;
bingbot/2.0; +http://www.bing.com/bingbot.htm)", which tells
us definitively that it is indeed a bot.

Now that you have the access log and understand what is in it, you can parse it to use

each field in it programmatically.

Parsing the Access Log

The process of parsing the access log is the following:

1.

2.

3.

4.

Read in the access log.

Parse it and gather geographic data based on the stored IP
address.

Output the fields that we are interested in for our visualization.

Read in this output and visualize.

We'll use PHP for the first three steps and R for the last step. Note that you will need
to be running PHP 5.4.10 or higher to successfully run the following PHP code.

123

http://www.bing.com/bingbot.htm

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

Read in the Access Log

Create a new PHP document called parselogs . php, within which you will first create a
function to read in a file. Call this function parseLog() and have it accept the path to the
file:

function parselog($file){
}

Within this function, you will write some code that will open the passed-in file for
reading and iterate through each line of the file until it reaches the end of the file. Each
step in the iteration stores the line that is read in, in the variable $1ine:

$logArray = array();

$file _handle = fopen($file, "r");

while (!feof($file handle)) {
$line = fgets($file handle);

}

fclose($file handle);

Fairly standard file I/O functionality in PHP so far. Within the loop, you will stub
out a function call to a function that you will call parseLoglLine() and another function
that you will call getLocationbyIP().In parselLogline(), you will split up the line and
store the values in an array. In getLocationbyIP(), you will use the IP address to get
geographic information. You will then store this returned array in a larger array that is
called $logArray.

$lineArr = parseloglLine($line);
$lineArr = getlLocationbyIP($lineArr);
$logArray[count($logArray)] = $lineArr;

Don'’t forget to create the $1ogArray variable at the top of the function.
The finished function should look like so:

function parselog($file){

$logArray = array();

$file_handle = fopen($file, "r");

while (!feof($file handle)) {
$line = fgets($file handle);

124

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

$lineArr = parseloglLine($line);
$lineArr = getlLocationbyIP($lineArr);
$logArray[count($logArray)] = $lineArr;

}
fclose($file handle);

return $logArray;

}

Parse the Log File

Next, you'll flesh out the parseLoglLine() function. First, you'll create the empty
function:

function parselLoglLine($loglLine){
}

The function will expect a single line of the access log.

Remember that each line of the access log is made up of sections of information
separated by whitespace. Your first instinct might be to just split the line at each
instance of a whitespace, but this would result in breaking up the user agent string (and
potentially other fields) in unexpected ways.

For our purposes, a much cleaner way to parse the line is to use a regular expression.
Regular expressions, called regex for short, are patterns that enable you to do quick and
efficient string matching.

Regular expressions use special characters to define these patterns: individual
characters, character literals, or sets of characters. A deep dive on regular expressions
is outside of the scope of this chapter, but a great reference to read about the different
regular expression patterns is the Microsoft regular expression Quick Reference,
available here: http://msdn.microsoft.com/en-us/library/az24scfc.aspx.

Grant Skinner also provides a great tool for creating and debugging regular
expressions (see Figure 5-5), which is available here: https://regexr.com.

125

http://msdn.microsoft.com/en-us/library/az24scfc.aspx
https://regexr.com

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

Cheatsheet

d{AIN] " #2) - (47) - (.42

3" (Nd{33) - (N [(T2.%2)) (["] %] (R2. 4

1 match (0.3ms)

- (14/3un/2021:14:21:83 -B460] "GE y-comment-leads-to-parking-lot-

(Linux; Android 7.0;)

.t el =
537 35 (KHTI!L l1 ke “Gecko) Mobile sofari{sz? 36 (compat:
+https://webmaster.petalsearch.com/site/petalbot) ™

Tools. Replace List | Details Ephin X

Match @ 8-338

"Mozilla/5.8 (Linux; Android 7.9;) AppleWebKit/537.36 (KHTML, like Gecko) Mobile
Safari/537.36 (compatible;
PetalBot;+https://webmaster.petalsearch.com/site/petalbot)"

Group 1 9-14 114.119.143.124

Group 2 16-16 =

Group 3 18-18 |

Figure 5-5. Grant Skinner’s regex tool

To use Grant’s tool, change the mode at the top from JavaScript to PCRE (which
is how PHP interprets regular expressions). Then paste in the following into the large
“Text” box:

114.119.143.124 - - [14/Jun/2021:14:21:03 -0400] “GET /2007/12/your-daddy-
comment-leads-to-parking-lot-attack-northwest-florida-daily-news/ HTTP/1.1” 200
19591 “-” “Mozilla/5.0 (Linux; Android 7.0;) AppleWebKit/537.36 (KHTML, like Gecko)
Mobile Safari/537.36 (compatible; PetalBot;+https://webmaster.petalsearch.com/
site/petalbot)”

Finally, enter the following regular expression into the “Expression” box: A([\d.:]+)
(\S+) (\S+) \[(O\wW\/]H):(D\we])\s([+\-1\Nd{4D\] “(+2) (+2) (.+2)” (\d{3}) (\d+|(2:.+?))
‘A1) “(V T (3242

Clicking the expression match will now let you explore how each portion of the
regular expression is found in the log entry that we pasted in.

Turning to our PHP code, let’s define our regular expression pattern and store it in a
variable that we will call $pattern.

126

https://webmaster.petalsearch.com/site/petalbot
https://webmaster.petalsearch.com/site/petalbot

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

If you aren’t proficient with regex, you can create them fairly easily using Grant
Skinner’s tool (refer to Figure 5-5). Using this tool, you can come up with the following
pattern:

$pattern = "/A([\d.:]+) (\S+) (\S+) \[([\w\/]+):([\w:]+)\s([+\-
INA{aP)N] "(.+2) (L+2) (+2)" (\d{3}) (\d+|(2:.+2)) "([""]*|(2:.+2))"
(T (2a))

Within the tool, you can see how it breaks up the strings into the following groups
(see Figure 5-6).

Group 1 0-14 114.119.143.124
Group 2 16-16 -

Group 3 18-18 -

Group 4 21-31 14/Jun/2021

Growp 5 3340 14:21:03
Group 6 42-46 -0400
Group 7 50-52 GET

Group 8 54-138

Figure 5-6. Log file line split into groups

You now have a regular expression to use. Let’s use PHP’s preg_match() function.
This takes as parameters a regular expression, a string to match it against, and an array to
populate as the output of the pattern matching:

preg match($pattern,$logline,$logs);

From there, we can just create an associative array with named indexes to hold our
parsed up line:

$logArray = array();

$logArray['ip'] = gethostbyname($logs[1]);
$logArray['identity'] = $logs[2];
$logArray['user'] = $logs[2];
$logArray['date’'] = $logs[4];
$logArray['time'] = $logs[5];

$logArray['timezone'] = $logs[6];
$logArray['method'] = $logs[7];

127

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

$logArray['path'] = $logs[8];
$logArray['protocol’] = $logs[9];
$logArray['status'] = $logs[10];
$logArray['bytes'] = $logs[11];

$logArray['referer'] = $logs[12];
$logArray['useragent'] = $logs[13];

Our complete parseLoglLine() function should now look like this:

function parselLoglLine($loglLine){
$pattern = "/A([\d.:]+) (\S+) (\S+) \[([\W\/]+):([\w:]+)\
S([+\-I\d{4})\T "(.+?) (.+?) (.+2)" (\d{3}) (\d+|(?:.+?))
AP CGea)) NTE ()
preg match($pattern,$logline,$logs);
$logArray = array();
$logArray['ip'] = gethostbyname($logs[1]);
$logArray['identity'] = $logs[2];
$logArray['user'] = $logs[2];
$logArray['date’'] = $logs[4];
$logArray['time'] = $logs[5];
$logArray['timezone'] = $logs[6];

$logArray['method'] = $logs[7];
$logArray['path'] = $logs[8];
$logArray['protocol’'] = $logs[9];
$logArray['status'] = $logs[10];

$logArray['bytes'] = $logs[11];
$logArray['referer'] = $logs[12];
$logArray['useragent'] = $logs[13];
return $logArray;

Next, you will create the functionality for the getLocationbyIP() function.

128

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

Geolocation by IP

In the getLocationbyIP() function, you can take the array that you made by parsing

a line of the access log and use the IP field to get the geographic location. There are

many ways to get geographic location by IP address; most involve either calling a third-
party API or downloading a third-party database with the IP location information
prepopulated. Some of these third parties are freely available; some have a cost

associated with them.

For our purposes, you can use the free API available at hostip.info. Figure 5-7 shows

the hostip.info home page.

hostip.info

My IP Address Lookup and GeoTargeting
Community Geotarget IP Project — what
country, city IP addresses map to

IP Address Lookup APl Data Contribute Forum
Domain to IP or Host name lookup
71.225.152.145 Go

Host name: c-71-225-152-145.hsd1.pa.comcast.net.
IP address: 71.225.152.145
Location: Chalfont, PA, UNITED STATES (change)

Are you an ISP / host? Update an entire block

Creek Rd %ﬂ
%
gy $:
B (152 :;f i
=l € Pl 2
* o
e
% o
b) of
Sun ; &
e]
8, 0 ave. g Q‘w.\’e qd'(o
%, ETRT &, K
® Y
% & 4 -
4% o
& T
N < _
4y, - :
T bl
) H
RED BY [Biritta i
O e Farms-Highlands o,
\)3 Map data ©€2013 Google - &’q,‘g“: of Use A
-
) Like 455 people like this. Sign Up to see what your friends like.]

Figure 5-7. hostip.info home page

FAQ About Ecommerce

=

Advertising on YouTube

Reach more viewers and boost sales with
AdWords for video.

by on YouTube

> Commercial Geodatabases
= MaxMind

If you're looking for a commercial option,
this database maintains a great level of
accuracy.

Change Your IP Address

Use a virtual private network to create a
secure connection anywhere you connect
to the Internet.

Other interesting projects

Business Reference

Referance for Business

1911 Encyclopedia Britannica

Brief Biographies

Library Index

Comprehensive Library Reference Material

129

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

The hostip.info service aggregates geotargeting information from ISPs as well
as direct feedback from users. It exposes an API as well as a database available for
download.

The APl is available at http://api.hostip.info/. If no parameters are provided,
the API returns the geolocation of the client. By default, the API returns XML. The return
value looks like this:

<?xml version="1.0" encoding="IS0-8859-1" ?>
<HostipLookupResultSet version="1.0.1" xmlns:gml=" http://www.opengis.net/
gml " xmlns:xsi=" http://www.w3.0rg/2001/XMLSchema-instance " xsi:noName
spaceSchemalocation=" http://www.hostip.info/api/hostip-1.0.1.xsd ">
<gml:description>This is the Hostip Lookup Service</gml:description>
<gml:name>hostip</gml:name>
<gml:boundedBy>
<gml:Null>inapplicable</gml:Null>
</gml:boundedBy>
<gml:featureMember>
<Hostip>
<ip>71.225.152.145¢/ip>
<gml:name>Chalfont, PA</gml:name>
<countryName>UNITED STATES</countryName>
<countryAbbrev>US</countryAbbrev>
<!-- Co-ordinates are available as lng,lat -->
<ipLocation>
<gml:pointProperty>
<gml:Point srsName=" http://www.opengis.net/gml/srs/epsg.xml#4326 ">
<gml:coordinates>-75.2097,40.2889</gml:coordinates>
</gml:Point>
</gml:pointProperty>
</iplLocation>
</Hostip>
</gml:featureMember>
</HostipLookupResultSet>

130

http://api.hostip.info/

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

You can refine the API calls. If you want only country information, you can call
http://api.hostip.info/country.php. It returns a string with a country code. If JSON
is preferred over XML, you can call http://api.hostip.info/get_json.php and get the
following result:

{"country name":"UNITED STATES","country code":"US","city":"Chalfont,
PA","ip":"71.225.152.145"}

To specify an IP address, add the parameter ?ip=xxxx, like so:
http://api.hostip.info/get_json.php?ip=100.43.83.146

OK, let’s code the function!

We'll stub out the function and have it accept an array. We'll pull the IP address from
the array, store it in a variable, and concatenate the variable to a string that contains the
path to the hostip.info API:

function getLocationbyIP($arr){
$IPAddress = $arr['ip'];
$IPCheckURL = " http://api.hostip.info/get_json.php?ip=$IPAddress *“;

You'll pass this string to the native PHP function file get contents() and store
the return value, the results of the API call, in a variable that you'll name jsonResponse.
You'll use the PHP json_decode() function to convert the returned JSON data into a
native PHP object:

$jsonResponse = file get contents($IPCheckURL);
$geoInfo = json_decode($jsonResponse);

You next pull the geolocation data from the object and add it to the array that you
passed into the function. The city and state information is a single string separated by a
comma and a space (“Philadelphia, PA”), so you'll need to split at the comma and save
each field separately in the array.

$arr['country'] = $geoInfo->{"country code"};
$arr['city'] = explode(",",$geoInfo->{"city"})[0];
$arr['state'] = explode(",",$geoInfo->{"city"})[1];

131

http://api.hostip.info/country.php
http://api.hostip.info/get_json.php

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

Next, let’s do a little bit of error checking that will make things easier later on in the
process. You'll check to see whether the state string has any value; if it doesn’t, set it to
“XX’ This will be helpful once you begin parsing data in R. And finally, you'll return the
updated array:

if(count($arr['state']) < 1)
$arr['state'] = "XX";
return $arr;

The full function should look like this:

function getlocationbyIP($arr){
$IPAddress = $arr['ip'];
$IPCheckURL = " http://api.hostip.info/get json.php?ip=$IPAddress “;
$jsonResponse = file get contents($IPCheckURL);
$geoInfo = json decode($jsonResponse);
$arr['country'] = $geoInfo->{"country code"};
$arr['city'] = explode(",",$geoInfo->{"city"})[0];
$arr['state'] = explode(",",$geoInfo->{"city"})[1];
if(count($arr['state']) < 1)

$arr['state'] = "XX";

return $arr;

Finally, let’s create a function to write processed data out to a file.

Output the Fields

You'll create a function named writeRLog() that accepts two parameters—the array
populated with decorated log data and the path to a file:

function writeRLog($arr, $file){
}

132

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

You need to create a variable called writeFlag that will be the flag to tell PHP to
either write or append data to the file. You check to see whether the file exists; if it does,
you append content instead of overwrite. After the check, open the file:

writeFlag = "w";
if(file exists($file)){

$writeFlag = "a";

}
$th = fopen($file, $writeFlag) or die("can't open file");

You then loop through the passed-in array; construct a string containing the IP
address, date, HTTP status, country code, state, and city of each log entry; and write that
string to the file. Once you've finished iterating through the array, you close the file.

for($x = 0; $x < count($arr); $x++){
if($arr[$x]['country'] != "XX"){
$data = $arr[$x]['ip'] . "," . Sarr[$x]['date'] . "," . $arr[$x]
['status'] . "," . $arr[$x]['country'] . "," . $arr[$x]['state’]
"L Sarr[$x][ity];
}
fwrite($th, $data . "\n");

Our completed writeRLog() function should look like this:

function writeRLog($arr, $file){
$writeFlag = "w";
if(file exists($file)){
$writeFlag = "a";
}
$th = fopen($file, $writeFlag) or die("can't open file");
for($x = 0; $x < count($arr); $x++){
if($arr[$x]['country'] = "XX"){
$data = $arr[$x]['ip'] . "," . $arr[$x]['date'] . "," .
$arr[$x]['status'] . "," . $arr[$x]['country'] . "," .
$arr[$x]['state'] . "," . $arr[$x]['city'];
}
fwrite($fh, $data . "\n");

133

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

}
fclose($fth);
echo "log created";
}
Adding Control Logic

Finally, you'll create some control logic to invoke all these functions that you just
created. You'll declare the path to the access log and the path to our output flat file, call
parselog(), and send the output to writeRLog().

$logfile = "access log";
$chartingData = "accesslogData.txt";
$logArr = parselog($logfile);
writeRLog($logArr, $chartingData);

Our completed PHP code should look like the following:

<html>
<head></head>
<body>
<?php
$logfile = "access_log";
$chartingData = "accesslLogData.txt";
$logArr = parselog($logfile);
writeRLog($logArr, $chartingData);
function parselog($file){
$logArray = array();
$file_handle = fopen($file, "r");
while (!feof($file handle)) {
$line = fgets($file_handle);
$lineArr = parseloglLine($line);
$lineArr = getLocationbyIP($lineArr);
$logArray[count($logArray)] = $lineArr;

134

}

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

fclose($file_handle);
return $logArray;

function parselogline($loglLine){

}

$pattern = "/7([\d.:J+) (\S+) (\S+) \[([\w\/]+):([\w:]+)\
S([+\-1\d{4})\] "(.+2) (.+2) (.+2)" (\d{3}) (\d+|(?:.+?))
TR Qear)) "t TR (Rea2))
preg_match($pattern,$logline,$logs);

$logArray = array();

$logArray['ip'] = gethostbyname($logs[1]);

$logArray['identity'] = $logs[2];

$logArray['user'] = $logs[2];

$logArray['date'] = $logs[4];

$logArray['time'] = $logs[5];

$logArray['timezone'] = $logs[6];

$logArray['method'] = $logs[7];

$logArray['path'] = $logs[8];

$logArray['protocol'] = $logs[9];

$logArray['status'] = $logs[10];

$logArray['bytes'] = $logs[11];

$logArray['referer'] = $logs[12];

$logArray['useragent'] = $logs[13];

return $logArray;

function getlLocationbyIP($arr){

$IPAddress = $arr['ip'];

$IPCheckURL = "http://api.hostip.info/get_json.php?ip=$IPAddress";
$jsonResponse = file get contents($IPCheckURL);

$geoInfo = json decode($jsonResponse);

$arr['country'] = $geoInfo->{"country code"};

$arr['city'] = explode(",",$geoInfo->{"city"})[0];

$arr['state'] = explode(",",$geoInfo->{"city"})[1];

return $arr;

135

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

function writeRLog($arr, $file){
$writeFlag = "w";
if(file_exists($file)){
$writeFlag = "a";
}
$th = fopen($file, $writeFlag) or die("can't open file");
for($x = 0; $x < count($arr); $x++){
if($arr[$x]["country'] 1= "XX"){
$data = $arr[$x]['ip'] . "," . $arr[$x]['date’]
"L $arr[$x]['status'] . ", . $arr[$x]
['country'] . "," . $arr[$x]['state'] . "," .
$arr[$x]['city'];
}
fwrite($th, $data . "\n");
}
fclose($fh);
echo "log created";
}
?>
</body>
</html>

And it should produce a flat file that looks similar to this:

71.225.152.145,18/Jan/2013,404,US, PA,Chalfont
114.119.143.124,14/3un/2021,200,AU, ,Canberra

We have made a sample access log available here: https://jonwestfall.com/data/
access_log.

Creating a Data Map in R

So far, you parsed the access log, scrubbed the data, decorated it with location
information, and created a flat file that has a subset of information. The next step is to
visualize this data.

136

https://jonwestfall.com/data/access_log
https://jonwestfall.com/data/access_log

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

Because you are making a map, you need to install the map package. Open up R;
from the console, type the following:

> install.packages('maps")
> install.packages('mapproj")

Now we can begin! To reference the map package in the R script, you need to load it
into memory by calling the library() function:

library(maps)
library(mapproj)

You next create several variables—one to point to our formatted access log data;
another is a list of column names. You create a third variable, logData, to hold the data
frame created when you read in the flat file.

logDataFile <- '/Applications/MAMP/htdocs/accesslLogData.txt'
logColumns <- c("IP", "date", "HTTPstatus", "country", "state", "city")

logData <- read.table(logDataFile, sep=",", col.names=logColumns)

If you type logData in the console, you see the data frame formatted like this:

> logData
Ip date HTTPstatus country state «city
1 100.43.83.146 25/Jan/2013 404 us Y Las Vegas
2 100.43.83.146 25/Jan/2013 301 us NV Las Vegas
3 64.29.151.221 25/Jan/2013 200 us XX (Unknown city)
4 180.76.6.26 25/Jan/2013 200 CN XX Beijing

Clearly, you could start to track several different data points here. Let’s first look at
mapping out what countries the traffic is coming from.

Mapping Geographic Data

You can begin by pulling the unique country names from logData. You'll store this in a
variable named country:

> country <- unique(logData$country)

137

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS
If you type country in the console, the data looks like the following:

> country
[1] US CN CA SE UA
Levels: CA CN SE UA US

These are the country codes that you get back from iphost.info. R has a different
set of country codes that it uses, so you'll need to convert the iphost country codes to R
country codes. You can do this by applying a function to the country list.

You'll use sapply() to apply an anonymous function of your own design to the list
of country codes. In the anonymous function, you'll trim any whitespace and do a direct
replacement of country codes. You will use the gsub() function to do a replacement of
all instances of the passed-in parameter.

country <- sapply(country, function(countryCode){
#trim whitespaces from the country code
countryCode <- gsub("(™ +)|(+$)", "", countryCode)
if(countryCode == "US"){
countryCode<- "USA"
}else if(countryCode == "AU"){
countryCode<- "Australia"
1}
)

You'll notice that you are hard-coding every country code that you have. This is, of
course, bad form, and you'll approach this problem a very different way once you dig
into state data.

If you type country into the console again, you'll now see the following:

> country
us AU
"USA" "Australia"

You next use the match.map() function to match the countries with the map
package’s list of countries. The match.map() function creates a numeric vector in which
each element corresponds to a country on the world map. The elements of intersection

138

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

(where countries in the country list match countries in the world map) have values
assigned to them—specifically, the index number from the original country list. So the
element that corresponds to USA has a 1, the element that corresponds to Canada has a
2, and so on. Where there is no intersection, the element has the value NA.

countryMatch <- match.map("world2", country)

Let’s next use the countryMatch list to create a color-coded country match. To
do this, simply apply a function that checks each element. If it is not NA, assign the
color #C6DBEF to the element, which is a nice light blue. If the element is NA, set the
element to white or #FFFFFFE. You will save the result of this in a new list that you will call
colorCountry.

colorCountry <- sapply(countryMatch, function(c){
if(!is.na(c)) c <- "#C6DBEF"

else c <- "H#FFFFFF"

)

Now let’s create our first visualization with the map () function! The map() function
accepts several parameters:

o The first is the name of the database to use. The database name can
be either world, usa state, or county; each contains data points that
correlate to geographic areas that the map () function will draw.

o Ifyou only want to draw a subset of the larger geographic database,
you can specify an optional parameter named region that lists the
areas to draw.

¢ You can also specify the map projection to use. A map projection is
basically a way to represent a three-dimensional curved space on a
flat surface. There are a number of predefined projections, and the
mapproj package in R supports a number of these. For the world
map that you'll be making, you will use an equal area projection, the
identifier of which is “azequalarea” For more about map projections,
see http://xkcd.com/977/.

139

http://xkcd.com/977/

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

e You also can specify the center point of our map, in latitude and
longitude, using the orientation parameter.

o Finally, you'll pass the colorCountry list that you just made to the col
parameter.

map('world', proj='azequalarea', orient=c(41,-74,0), boundary=TRUE,
col=colorCountry, fill=TRUE)

This code produces the map that you can see in Figure 5-8.

Figure 5-8. Data map using a world map

From this map, we can see that the countries from our unique list are shaded blue
and the rest of the countries are colored white. This is good, but we can make it better.

140

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

Adding Latitude and Longitude

Let’s start by adding latitude and longitude lines, which will accentuate the curvature of
the globe and give context to where the poles are. To create latitude and longitude lines,
we first create a new map object, but we will set plot to FALSE so that the map is not
drawn to the screen. We'll save this map object to a variable named m:

m <- map('world',plot=FALSE)
We'll next call map.grid() and pass in our stored map object:
map.grid(m, col="blue", label=FALSE, lty=2, pretty=TRUE)

Note that if you are running this code line by line in the command window, it’s
important to keep the Quartz graphic window open as you type the lines in so that R
can update that chart. If you close the Quartz window while typing it in line by line, you
could get an error stating that plot.new has not been called. Or you could type each line
into a text file and copy them into the R command line all at once.

While we're at it, let’s add a scale to the chart to show

map.scale()
Our completed R code should now look like so:

library(maps)
library(mapproj)
logDataFile <- '/Applications/MAMP/htdocs/accesslLogData.txt'
logColumns <- c("IP", "date", "HTTPstatus", "country", "state", "city")
logData <- read.table(logDataFile, sep=",", col.names=logColumns)
country <- unique(logData$country)
country <- sapply(country, function(countryCode){
#trim whitespaces from the country code
countryCode <- gsub("(® +)|(+$)",
if(countryCode == "US"){
countryCode<- "USA"
}else if(countryCode == "CN"){
countryCode<- "China"
}else if(countryCode == "CA"){
countryCode<- "Canada"

, countryCode)

141

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

}else if(countryCode == "SE"){
countryCode<- "Sweden"

}else if(countryCode == "UA"){
countryCode<- "USSR"

}

1)

countryMatch <- match.map("world", country)
#icolor code any states with visit data as light blue
colorCountry <- sapply(countryMatch, function(c){

if(!is.na(c)) c <- "#C6DBEF"

else c <- "H#FFFFFF"

1)
m <- map('world',plot=FALSE)
map('world',proj="azequalarea',orient=c(41,-74,0), boundary=TRUE,
col=colorCountry,fill=TRUE)

map.grid(m,col="blue", label=FALSE, lty=2, pretty=TRUE)
map.scale()

And this code outputs the world map shown in Figure 5-9.

142

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

- -

-

scale a roke‘l:}
0 20 4060 km

Figure 5-9. Globe data map with latitude and longitude lines as well as scale

Very nice! Next, let’s drill into a breakdown of visits by states in the United States.

Displaying Regional Data

Let’s start by isolating US data; we can do this by selecting all rows in which the state
does not equal “XX” Remember setting the value in the state column to “XX” when we
were parsing the access log in PHP? This is why. Countries other than the United States
don’t have state data associated with them, so we can simply pull only the rows that have

state data.

usData <- logData[logData$state != "XX",]

143

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

We next need to replace the state abbreviations that we got from hostip.info with the
full state names so that we can create a match.map lookup list, much like we did with the
preceding country data.

The upside with state data is that R has a data set that contains all 50 US state
names, abbreviations, and even more esoteric information such as area of the state and
named divisions (New England, Middle Atlantic, and so on). For more information, type
?state.name at the R console.

We can use the information in this data set to match the state abbreviations with the
full state names that the map package needs. To do this, we use the apply() function to
run an anonymous function that greps through the state.abb data set to find a match
for the passed-in state abbreviation and then use that returned value as the index for
retrieving the full state name from the state.name data set:

usData$state <- apply(as.matrix(usData$state), 1, function(s){
#trim the abbreviation of whitespaces
s <- gsub("(™ +)|(+$)", "", s)
s <- state.name[grep(s, state.abb)]

}

We achieve the same functionality as the previous country match, but much more
elegantly. If we were so inclined, we could go back and create our own data set of
country names for future use to have a similar elegant solution for the country match.

Now that we have full state names to use, we can pull a unique list of state names and
use that list to create a map matched list (again, just as we did for countries):

states <- unique(usData$state)
stateMatch <- match.map("state", states)

With our state match list, we can again apply a function to it that will look for
matches in our match list, elements that do not have the value NA, and set the value for
those elements to our nice light blue color while all elements that do have the value of
NA get set to white. We save this list in a variable that we name colorMatch.

#color code any states with visit data as light blue
colorMatch <- sapply(stateMatch, function(s){
if(!is.na(s)) s <- "#C6DBEF"

else s <- "H#FFFFFF"

1)

144

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS
We can then use colorMatch in our call to the map () function:

map("state", resolution = 0,1ty = 0,projection = "azequalarea",
col=colorMatch,fill=TRUE)

Hmm, but notice something? Only the colored areas are drawn to the stage, as
shown in Figure 5-10.

Figure 5-10. Data map with only states that have data displayed

We need to make a second map () call that will draw the remainder of the map. In this
map () call, we will set the add parameter to TRUE, which will cause the new map that we
are drawing to be added to the current map. While we're at it, let’s create a scale for this
map as well:

map("state", col = "black", fill=FALSE, add=TRUE, lty=1, lwd=1,
projection="azequalarea")
map.scale()

This code produces the finished state map in Figure 5-11.

145

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

scale approx 1:310,000
[1 T]
0 5 10 15 km

Figure 5-11. Completed state data map

Distributing the Visualization

OK, now let’s put our R code in an R Markdown file for distribution. Let’s go into RStudio
and click File » New » R Markdown. Let’s add a header and make sure that our R code
iswrapped in ~ " " {r} tags and that our charts have heights and widths assigned to them.
Our completed R Markdown file should look like this:

Visualizing Spatial Data from Access Logs

library(maps)

library(mapproj)

logDataFile <- '/Applications/MAMP/htdocs/accesslLogData.txt’

logColumns <- c("IP", "date", "HTTPstatus", "country", "state", "city")

logData <- read.table(logDataFile, sep=",", col.names=logColumns)

[NENEN

“*{r fig.width=15, fig.height=10}
#chart worldwide visit data
#unfortunately there is no state.name equivalent for countries so we must check

146

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

#the explicit country names. In the us states below we are able to
accomplish this much
#imore efficiently
country <- unique(logData$country)
country <- sapply(country, function(countryCode){
#trim whitespaces from the country code
countryCode <- gsub("(® +)|(+$)", "", countryCode)
if(countryCode == "US"){
countryCode<- "USA"
}else if(countryCode == "CN"){
countryCode<- "China"
}else if(countryCode == "CA"){
countryCode<- "Canada"
}else if(countryCode == "SE"){
countryCode<- "Sweden"
}else if(countryCode == "UA"){
countryCode<- "USSR"
}
1)

countryMatch <- match.map("world", country)
#icolor code any states with visit data as light blue
colorCountry <- sapply(countryMatch, function(c){
if(!is.na(c)) c <- "#C6DBEF"
else c <- "H#FFFFFF"
1)
m <- map(‘world',plot=FALSE)
map('world',proj="azequalarea',orient=c(41,-74,0), boundary=TRUE,
col=colorCountry,fill=TRUE)
map.grid(m,col="blue", label=FALSE, lty=2, pretty=FALSE)
map.scale()

NENIEN

RN

{r fig.width=10, fig.height=7}

#isolate the US data, scrub any unknown states

usData <- logData[logData$state != "XX",]

usData$state <- apply(as.matrix(usData$state), 1, function(s){
#trim the abbreviation of whitespaces
s <- gsub("(* +)[(+$)", "", s)

147

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

s <- state.name[grep(s, state.abb)]
}
s <- map('state',plot=FALSE)
states <- unique(usData$state)
stateMatch <- match.map("state", states)
#color code any states with visit data as light blue
colorMatch <- sapply(stateMatch, function(s){
if(!is.na(s)) s <- "#C6DBEF"
else s <- "H#FFFFFF"
1y
map("state", resolution = 0,1ty = 0,projection = "azequalarea",
col=colorMatch,fill=TRUE)
map("state", col = "black",fill=FALSE,add=TRUE,1ty=1,lwd=1,projection="azeq
ualarea")
map.scale()

[NENEN

This code produces the output shown in Figure 5-12. I have also made this R script
available in the code download for this book.

148

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

Visualizing Spatial Data from Access Logs

#chart worldwide visit data
#unfortunately there is no state.name equivalent for countries so we must check
#the explicit country names. In the us states below we are able to accomplish this
much
#more efficiently
country <- unique(logData$country)
country <- sapply(country, function(countryCode){
#trim whitespaces from the country code
countryCode <- gsub("(~ +)|(+$)", "", countryCode)
if (countryCode == "US"){
countryCode<- "USA"
}else if(countryCode == "AU"){
countryCode<- "Australia"

}}

)
countryMatch <- match.map("world2", country)

colorCountry <- sapply(countryMatch, function(c){
if(l!is.na(c)) ¢ <- "#C6DBEF"
else ¢ <- "#FFFFFF"

3
map(‘'world’', proj='azequalarea', orient=c(41,-74,0), boundary=TRUE, col=colorCount

ry, £ill=TRUE)
m <- map('world',plot=FALSE)
map.grid(m, col="blue", label=FALSE, lty=2, pretty=TRUE)

map.scale()

scale approx 1:1.600,000
r T 1
o 50 100 km

Figure 5-12. Data maps in R Markdown

149

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

#isolate the US data, scrub any unknown states
usData <- logData[logData$state != "XX",]
usData$state <- apply(as.matrix(usData$state), 1, function(s){
#trim the abbreviation of whitespaces
s <- gsub("(" +)|(+$)", "", 8)
s <- state.name[grep(s, state.abb)]
}
s <- map('state',plot=FALSE)
states <- unique(usData$state)
stateMatch <- match.map("state", states)
#color code any states with visit data as light blue
colorMatch <- sapply(stateMatch, function(s){
if(!is.na(s)) s <- "#C6DBEF"
else s <- "#FFFFFF"
9]
map(“state", resolution = 0,1ty = 0,projection = "azequalarea", col=colorMatch,fil
1=TRUE)
map("state", col = "black",fill=FALSE,add=TRUE,1lty=1,lwd=1,projection="azequalarea
)
map.scale()

scale apgmx 1:300,000

0 5 10 km

Figure 5-12. (continued)

150

CHAPTER 5 VISUALIZING SPATIAL DATA FROM ACCESS LOGS

Summary

This chapter discussed parsing access logs to produce data map visualizations. You
looked at both global country data in your maps and more localized state data. This is
the first taste of how you can begin to bring usage data to life.

The next chapter looks at bug backlog data in the context of time series charts.

151

CHAPTER 6

Visualizing Data over Time

The last chapter discussed using access logs to create data maps representing the
geographic location of users. We used the map and mapproj (for map projections)
packages to create these visualizations.

This chapter explores creating time series charts, which are graphs that compare
changes in values over time. They are generally read left to right with the x-axis
representing some measure of time and the y-axis representing the range of values.
This chapter discusses visualizing defects over time.

Tracking defects over time allows us to identify not only spikes in issues but also
larger patterns in workflows, especially when we include more granular details such
as bug criticality and include cross-referencing data such as dates for events like start
and end of iteration. We begin to expose trends such as when during an iteration bugs
get opened, when most of the blocker bugs get opened, or what iterations produce the
highest number of bugs. This kind of self-evaluation and reflection are what allow us
to identify and focus attention on blind spots or areas of improvement. It also allows
us to recognize victories in a larger scope that might be missed when viewing the daily
numbers without context.

A case in point: recently our organization set a larger group goal of achieving a
certain bug number by the end of the year, a percent of the total open bugs that we
had open at the beginning of the year. With our peers and our management staff, we
coached all the developers, created process improvements, and won hearts and minds
for this goal. At the end of the year, the number of bugs we had remaining open was
about the same as when we had started. We were confused and concerned. But when
we summed the daily numbers, we realized that we had achieved something larger than
we anticipated: we actually opened one-third fewer bugs overall year over year from the
previous year. This was huge and would easily have been missed if we weren’t looking at
the data with a critical eye to the larger picture.

153
© Tom Barker, Jon Westfall 2022

T. Barker and J. Westfall, Pro Data Visualization Using R and JavaScript,
https://doi.org/10.1007/978-1-4842-7202-2_6

https://doi.org/10.1007/978-1-4842-7202-2_6#DOI

CHAPTER 6 VISUALIZING DATA OVER TIME

Gathering Data

The first step of creating a defect time series chart is to decide on a time period that we
want to look at and gather the data. This means getting an export of all the bugs for a
given time period.

This step is completely dependent on the bug tracing software that you may
use. Maybe you use HP’s Quality Center because it makes sense with the rest of your
organization’s testing needs (such as being able to work with LoadRunner). Maybe you
use a hosted web-based solution such as Rally because you get defect management
bundled in with your user story and release tracking. Maybe you have your own
installation of Bugzilla because it’s open and free.

Whatever the case, all defect management software has a way to export your current
bug list. Depending on the defect-tracking software used, you can export to a flat file,
such as a comma or tab-separated file. The software can also allow access to its contents
via an API so you can create a script that accesses the API and exposes the content.

Either way, there are two important main cases when looking at bugs over time:

e Running total of bugs by date
e New bugs by date

For either of these cases, the minimum fields that we care about when we export
from the bug-tracking software are the following:

e Date opened

e Defectid

o Defect status

o Severity of defect

e Description of the defect

The exported bug data should look something like this:

Date, ID, Severity, Status, Summary
6/7/20,DE45091,Minor,Open,videos not playing
8/21/20,DE45092,Blocker,Open,alignment off
3/7/20,DE45093,Moderate,Closed, monsters attacking

Let’s process the data to be able to visualize it.

154

CHAPTER 6 VISUALIZING DATA OVER TIME

Data Analysis with R

The first thing is to read in and order the data. Assuming that data is exported to a flat file
named allbugs.csv, we can read in the data as follows (we have provided sample data
foritathttp://jonwestfall.com/data/allbugs.csv):

bugExport <- "/Applications/MAMP/htdocs/allbugs.csv"

bugs <- read.table(bugExport, header=TRUE, sep=",

Let’s order the data frame by date. To do this, we have to convert the Date column,
which is read in as a string, into a Date object using the as.Date() function. The as.
Date() function accepts several symbols to signify how to read and structure the date
object, as shown in Table 6-1.

Table 6-1. as.Date() function symbols

Symbol Meaning

7m Numeric month

%b Month name as string, abbreviated
%B Full month name as string

%d Numeric day

%a Weekday as abbreviated string

%A Full weekday as string

%y Year as two-digit number

%Y Year as four-digit number

So for the date "04/01/2013", we pass in "%m/%d/%Y"; for "April 01, 13", we pass
in "%B %d, %Y".You can see how the pattern matches up:

as.Date(bugs$Date, "%m/%d/%y")

155

http://jonwestfall.com/data/allbugs.csv

CHAPTER 6 VISUALIZING DATA OVER TIME

We'll use the converted date in the order () function, which returns a list of index
numbers from the bugs data frame, corresponding with the correct way to order the
values in the data frame:

> order(as.Date(bugs$Date, "%m/%d/%y"))

[1] 127 90 187 112 13 119 137 101 37 53 52 67 125 4 81 93 136

3 55 62 33 25130 75 85 28

[27] 44 159 126 107 30 191 80 124 36 104 18 24 82 20 21 34 56
147 29 156 16 59 51 139 1 123

[53] 113 146 148 5 103 43 83 23 173 11 168 99 35 7 192 42 142
121 9 69 2 171 60 94 164 17

[79] 91 84 178 96 105 8 110 39 177 109 97 120 135 58 79 15

111 49 117 50 57 92 129 114 145 158
[105] 116 151 143 162 31 73 77 182 26 74 195 10 48 88 76 183 115
184 189 108 61 174 144 186 12 134
[131] 157 41 86 27 175 6 165 46 118 188 65 141 22 169 190 72 66
154 40 47 64 166 14 87 95 155
[157] 193 133 179 54 140 128 89 102 161 63 45 78 138 180 149 185
106 38 181 172 176 153 160 150 170 122
[183] 194 100 167 68 98 132 70 152 19 163 71 32 131

Finally, we'll use the results of the order () function as the indexes of the bugs data
frame and pass the results back into the bugs data frame:

bugs <- bugs[order(as.Date(bugs$Date," %m/%d/%y ")),]

This code reorders the bugs data frame based on the order of the indexes returned in
the order () function. It will be handy when we begin to slice up the data. The data frame
should now be a chronologically ordered list of bugs, which looks like the following:

> bugs

Date ID Severity Status Summary
127 1/3/20 DE45217 Minor Open Mug of coffee empty
90 1/4/20 DE45180 Minor Closed mug of coffee destroyed
187 1/5/20 DE45277 Minor Open Zerg attack
112 1/9/20 DE45202 Blocker Closed Monkeys
13 1/12/20 DE45103 Minor Open Mug of coffee empty
119 1/13/20 DE45209 Blocker Closed The plague occurred

156

CHAPTER 6 VISUALIZING DATA OVER TIME

Let's write this newly ordered list back out to a new file that we will
reference later called allbugsOrdered.csv:

write.table(bugs, col.names=TRUE, row.names=FALSE, file="allbugsOrdered.
csv", quote = FALSE, sep = ","

This will come in handy later when we look at this data in D3.

Calculating the Bug Count

Next, we will calculate the total bug count by date. This will show how many new bugs
are opened by day.

To do this, we pass bugs$Date into the table() function, which builds a data
structure of counts of each date in the bugs data frame:

totalBugsByDate <- table(bugs$Date)
So the structure of totalBugsByDate looks like the following:

> totalBugsByDate

1/11/21 1/12/20 1/12/21 1/13/20 1/17/21 1/18/21 1/2/21 1/21/20 1/22/20

1 1 3 1 2 1 1 1 1
1/24/20 1/24/21 1/25/20 1/27/21 1/29/21 1/3/20 1/4/20 1/5/20 1/5/21
1 1 1 1 1 1 1 1 1

1/9/20 10/1/20 10/10/20 10/15/20 10/16/20 10/18/20 10/21/20 10/25/20 10/26/20

1 1 1 1 1 2 2 1 1
10/29/20 10/30/20 10/6/20 11/17/20 11/18/20 11/19/20 11/21/20 11/23/20 11/26/20
2 1 1 1 1 1 1 1 2
11/4/20 11/8/20 12/14/20 12/15/20 12/17/20 12/21/20 12/22/20 12/23/20 12/24/20
2 1 2 1 1 1 2 1 1
12/27/20 12/29/20 12/3/20 12/31/20 2/12/21 2/13/21 2/14/20 2/15/20 2/15/21
1 1 1 1 1 1 1 1 1
2/16/20 2/22/21 2/24/20 2/25/21 2/26/21 2/28/21 2/3/21 2/4/21 2/8/21
1 2 1 1 2 1 1 1 1

3/1/20 3/1/21 3/11/21 3/14/21 3/17/21 3/2/20 3/2/21 3/22/20 3/23/21

2 1 3 1 1 1 1 2 1

3/24/20 3/25/21 3/26/20 3/28/20 3/3/21 3/31/20 3/31/21 3/6/21 3/7/20

157

CHAPTER 6

1
3/7/21
1
4/27/20
1
5/12/20
2
5/24/21
1
5/31/20
1
6/28/20
1
6/9/21
1
7/9/20
1
8/27/20
1
9/2/20
1

Let’s plot this data out to get an idea of how many bugs are opened each day:

VISUALIZING DATA OVER TIME
1 1 1
4/12/21 4/13/20 4/15/21
1 1 1
4/29/21 4/4/20 4/5/21
1 1 3
5/14/21 5/16/21 5/17/20
1 1 1
5/25/20 5/26/21 5/27/20
1 1 1
5/6/20 5/8/20 6/11/20
1 1 1
6/3/20 6/3/21 6/4/20
1 1 1
7/14/20 7/18/20 7/2/20
1 2 1
8/10/20 8/17/20 8/2/20
1 2 1
8/28/20 8/29/20 8/3/20
1 1 1
9/21/20 9/8/20
1 1

1
4/18/21
2
4/7/20
1
5/17/21
1
5/27/21
1
6/11/21
1
6/4/21
1
7/22/20
1
8/21/20
1
8/6/20
1

1
4/19/21
1
4/8/20
2
5/2/21
1
5/28/20
1
6/14/20
1
6/6/21
1
7/23/20
1
8/22/20
1
9/10/20
1

1
4/20/20
1
5/1/20
2
5/20/20
1
5/28/21
1
6/16/21
2
6/7/20
2
7/25/20
1
8/23/20
1
9/11/20
1

1
4/25/20
1
5/10/20
1
5/20/21
2
5/29/21
2
6/2/21
1
6/7/21
1
7/28/20
1
8/24/20
2
9/14/20
1

plot(totalBugsByDate, type="1", main="New Bugs by Date", col="red",
ylab="Bugs")

This code creates the chart shown in Figure 6-1.

158

1
4/26/21
1
5/11/21
1
5/22/20
2
5/30/20
1
6/20/20
1
6/8/21
1
7/29/20
1
8/26/20
1
9/16/20
1

CHAPTER 6 VISUALIZING DATA OVER TIME

New Bugs by Date

3.0

2.5

Bugs
1.5

1.0

0.5

TSI
1/11/21 10/6/20 2/26/21 4/20/20 5/30/20 7/9/20

Figure 6-1. Time series of new bugs by date

Now that we have a count of how many bugs are generated each day, we can get a
cumulative sum by using the cumsum() function. It takes the new bugs opened each day
and creates a running sum of them, updating the total each day. It allows us to generate a
trend line for the cumulative count of bugs over time.

> runningTotalBugs <- cumsum(totalBugsByDate)

>

> runningTotalBugs

1/11/21 1/12/20 1/12/21 1/13/20 1/17/21 1/18/21 1/2/21 1/21/20 1/22/20

1 2 5 6 8 9 10 11 12
1/24/20 1/24/21 1/25/20 1/27/21 1/29/21 1/3/20 1/4/20 1/5/20 1/5/21
13 14 15 16 17 18 19 20 21
1/9/20 10/1/20 10/10/20 10/15/20 10/16/20 10/18/20 10/21/20 10/25/20 10/26/20
22 23 24 25 26 28 30 31 32

10/29/20 10/30/20 10/6/20 11/17/20 11/18/20 11/19/20 11/21/20 11/23/20 11/26/20

159

CHAPTER 6 VISUALIZING DATA OVER TIME

34 35 36 37 38 39 40 41 43
11/4/20 11/8/20 12/14/20 12/15/20 12/17/20 12/21/20 12/22/20 12/23/20 12/24/20
45 46 43 49 50 51 53 54 55
12/27/20 12/29/20 12/3/20 12/31/20 2/12/21 2/13/21 2/14/20 2/15/20 2/15/21
56 57 58 59 60 61 62 63 64
2/16/20 2/22/21 2/24/20 2/25/21 2/26/21 2/28/21 2/3/21 2/4/21 2/8/21
65 67 68 69 71 72 73 74 75
3/1/20 3/1/21 3/11/21 3/14/21 3/17/21 3/2/20 3/2/21 3/22/20 3/23/21
77 78 81 82 83 84 85 87 88
3/24/20 3/25/21 3/26/20 3/28/20 3/3/21 3/31/20 3/31/21 3/6/21 3/7/20
89 90 91 92 93 94 95 96 97
3/7/21 4/12/21 4/13/20 4/15/21 4/18/21 4/19/21 4/20/20 4/25/20 4/26/21
98 99 100 101 103 104 105 106 107
4/27/20 4/29/21 4/4/20 4/5/21 4/7/20 4/8/20 5/1/20 5/10/20 5/11/21
108 109 110 113 114 116 118 119 120
5/12/20 5/14/21 5/16/21 5/17/20 5/17/21 5/2/21 5/20/20 5/20/21 5/22/20
122 123 124 125 126 127 128 130 132
5/24/21 5/25/20 5/26/21 5/27/20 5/27/21 5/28/20 5/28/21 5/29/21 5/30/20
133 134 135 136 137 138 139 141 142
5/31/20 5/6/20 5/8/20 6/11/20 6/11/21 6/14/20 6/16/21 6/2/21 6/20/20
143 144 145 146 147 148 150 151 152
6/28/20 6/3/20 6/3/21 6/4/20 6/4/21 6/6/21 6/7/20 6/7/21 6/8/21
153 154 155 156 157 158 160 161 162
6/9/21 7/14/20 7/18/20 7/2/20 7/22/20 7/23/20 7/25/20 7/28/20 7/29/20
163 164 166 167 168 169 170 171 172
7/9/20 8/10/20 8/17/20 8/2/20 8/21/20 8/22/20 8/23/20 8/24/20 8/26/20
173 174 176 177 178 179 180 182 183
8/27/20 8/28/20 8/29/20 8/3/20 8/6/20 9/10/20 9/11/20 9/14/20 9/16/20
184 185 186 187 188 189 190 191 192
9/2/20 9/21/20 9/8/20
193 194 195

160

CHAPTER 6 VISUALIZING DATA OVER TIME

This is exactly what we need to now plot out the way the bug backlog grows or
shrinks each day. To do that, let’s pass runningTotalBugs to the plot() function. We
set the type to "1" to signify that we are creating a line chart and then name the chart
Cumulative Defects Over Time. In the plot() function, we also turn the axes off so that
we can draw custom axes for this chart. We will want to draw custom axes so that we can
specify the dates as the x-axis labels.

To draw custom axes, we use the axis() function. The first parameter in the axis()
function is a number that tells R where to draw the axis.

e 1 corresponds to the x-axis at the bottom of the chart.

o 2tothe left of the chart.

¢ 3 to the top of the chart.

e 4totheright of the chart.
plot(runningTotalBugs, type="1", xlab="", ylab="", pch=15, lty=1,
col="red", main="Cumulative Defects Over Time", axes=FALSE)

axis(1, at=1: length(runningTotalBugs), lab= row.names(totalBugsByDate))
axis(2, las=1, at=10*0:max(runningTotalBugs))

Note that the plot type is set to a lowercase L, not an uppercase i or 1. This code
creates the time series chart shown in Figure 6-2.

161

CHAPTER 6 VISUALIZING DATA OVER TIME

Cumulative Defects Over Time

O
elale]
 E [|

N
o
I]

g aaa i
111/21 10/6/20 2/26/21 4/20/20 5/30/20 7/9/20

Figure 6-2. Cumulative defects over time

This shows the progressively increasing bug backlog, by date.
The complete R code so far is as follows:

bugExport <- "allbugs.csv"

bugs <- read.table(bugExport, header=TRUE, sep=",")

as.Date(bugs$Date, "%m/%d/%y")

order(as.Date(bugs$Date, "%m/%d/%y"))

bugs <- bugs[order(as.Date(bugs$Date," %m/%d/%y ")),]

write.table(bugs, col.names=TRUE, row.names=FALSE, file="allbugsOrdered.
csv", quote = FALSE, sep = ","

totalBugsByDate <- table(bugs$Date)
plot(totalBugsByDate, type="1", main="New Bugs by Date", col="red",
ylab="Bugs")

162

CHAPTER 6 VISUALIZING DATA OVER TIME

runningTotalBugs <- cumsum(totalBugsByDate)

runningTotalBugs

plot(runningTotalBugs, type="1", xlab="", ylab="", pch=15, 1lty=1,
col="red", main="Cumulative Defects Over Time", axes=FALSE)

axis(1, at=1: length(runningTotalBugs), lab= row.names(totalBugsByDate))
axis(2, las=1, at=10*0:max(runningTotalBugs))

Let’s take a look at the criticality of the bugs, which shows not just when the bugs are
opened but also when the most severe (or non-severe) bugs are being opened.

Examining the Severity of the Bugs

Remember that when we exported the bug data, we included the Severity field, which
indicates the level of criticality of each bug. Each team and organization might have their
own classification of severity, but generally they include these:

o Blockers are bugs so severe that they prevent the launch of a body
of work. They generally have broken functionality or are missing
sections of a widely used feature. They can also be discrepancies with
contractually or legally binding features such as closed captioning or
digital rights protection.

e Moderates are bugs that are severe but not so damaging that they
gate a release. They can have broken functionality of less-used
features. The scope of accessibility, or how widely used a feature is,
is usually a determining factor between making a bug a blocker or a
critical.

e Minors are bugs with very minimal if any impact and might not even
be noticeable to an end user.

To break out the bugs by severity, we simply call the table() function, just as we did
to break out bugs out by date, but this time add in the Severity column as well:

bugsBySeverity <- table(factor(bugs$Date),bugs$Severity)

163

CHAPTER 6 VISUALIZING DATA OVER TIME

This code creates a data structure that looks like so:

Blocker Minor Moderate
1/11/21 0 1
1/12/20
1/12/21
1/13/20
1/17/21
1/18/21
1/2/21
1/21/20
1/22/20
1/24/20

O r B O O N B +» O
R O O P O O O N B
o O O O »pr O O O O O

We can then plot this data object. The way we do this is to use the plot () function to
create a chart for one of the columns and then use the 1ines() function to draw lines on
the chart for the remaining columns:

plot(bugsBySeverity[,3], type="1", xlab="", ylab="", pch=15, 1lty=1,
col="orange", main="New Bugs by Severity and Date", axes=FALSE)
lines(bugsBySeverity[,1], type="1", col="red", lty=1)
lines(bugsBySeverity[,2], type="1", col="yellow", 1lty=1)

axis(1, at=1: length(runningTotalBugs), lab= row.names(totalBugsByDate))
axis(2, las=1, at=0:max(bugsBySeverity[,3]))

legend("topleft", inset=.01, title="Legend", colnames(bugsBySeverity),
1ty=c(1,1,1), col= c("red", "yellow", "orange"))

This code produces the chart shown in Figure 6-3.

164

CHAPTER 6 VISUALIZING DATA OVER TIME

New Bugs by Severity and Date

—— Blocker
Minor
—— Moderate

2 Legend ‘

o< L | J_}_‘ .l L

111/21 10/6/20 2/26/21 4/20/20 5/30/20 7/9/20
Figure 6-3. Our plot() and lines() functions drawing the chart of bugs by severity

This is great, but what if we want to see the cumulative bugs by severity? We can
simply use the preceding R code, but instead of plotting out the columns, we can plot out
the cumulative sum of each column:

plot(cumsum(bugsBySeverity[,3]), type="1", xlab="", ylab="", pch=15, lty=1,
col="orange", main="Running Total of Bugs by Severity", axes=FALSE)
lines(cumsum(bugsBySeverity[,1]), type="1", col="red", 1lty=1)
lines(cumsum(bugsBySeverity[,2]), type="1", col="yellow", lty=1)

axis(1, at=1: length(runningTotalBugs), lab= row.names(totalBugsByDate))
axis(2, las=1, at=0:max(cumsum(bugsBySeverity[,3])))

legend("topleft", inset=.01, title="Legend", colnames(bugsBySeverity),
1ty=c(1,1,1), col= c("red", "yellow", "orange"))

165

CHAPTER 6 VISUALIZING DATA OVER TIME

This code produces the chart shown in Figure 6-4.

Running Total of Bugs by Severity

Legend /

—— Blocker
Minor
Moderate

32
30
28
26
24
22
20
18
16
14
12
10

8

6

4

2

0

et

111/21 10/6/20 2/26/21 4/20/20 5/30/20 7/9/20
Figure 6-4. Running total of bugs by severity

Adding Interactivity with D3

The previous example is a great way to visualize and disseminate information around the
creation of defects. But what if we could take it a step further and allow the consumers of our
visualizations to dive deeper into the data points that interest them? Say we wanted to allow
the user to mouse over a particular point in a time series and see a list of all the bugs that
make up that data point. We can do just that with D3; let’s walk through it and find out how.
First, let’s create a new file with the base HTML skeletal structure with a reference to
D3.js and save it as timeseriesGranular.htm. We'll want to use the older version of D3 for
this example—version 3 (d3.v3.js, available in the code download for this book), in that it
allowed for a bit more flexibility and step-by-step building than the newer code structure.

166

CHAPTER 6 VISUALIZING DATA OVER TIME

<html>

<head></head>

<body>

<script src="d3.v3.js"></script>
</body>

</html>

Next, we set some preliminary data in a new script tag. We create an object to
hold margin data for the graphic, as well as height and width. We also create a D3 time
formatter to convert the dates that are read in from string to a native Date object.

<script>
var margin = {top: 20, right: 20, bottom: 30, left: 50},
width = 960 - margin.left - margin.right,

height = 500 - margin.top - margin.bottom;
var parseDate = d3.timeFormat("%m/%d/%y").parse;
</script>

Reading in the Data

We add in some code to read in the data (the allbugsOrdered. csv file that was output
from R earlier). Recall that this file contains the entire bug data ordered by date.
We use the d3.csv() function to read this file:

o The first parameter is the path to the file.

e The second parameter is the function to execute once the data is
read in. It is in this anonymous function that we add most of the
functionality, or at least the functionality that is dependent on having
data to process.

The anonymous function accepts two parameters:
o The first catches any errors that may occur.

o The second is the contents of the file being read in.

167

CHAPTER 6 VISUALIZING DATA OVER TIME

In the function, we first loop through the contents of the data and use the date
formatter to convert all the values in the Date column to a native JavaScript Date object:

d3.csv("allbugsOrdered.csv", function(error, data) {
data.forEach(function(d) {
d.Date = parseDate(d.Date);

D;
D;
If we were to console. log() the data, it would be an array of objects that look like
Figure 6-5.
window > Object
Date Date { Fri Jan 04 2013 00:00:00 GMT-0800 (PST) }
D "46258™
Severity "Blocker"
Status "Open"
Summary "Left Nav Misaligned"

Figure 6-5. Our bug data object

Within the anonymous function but after the loop, we use the d3.nest () function to
create a variable that holds the bug data grouped by date. We name this variable nested
data:

nested data = d3.nest()
.key(function(d) { return d.Date; })
.entries(data);

The nested_data variable is now a tree structure—specifically a list that is indexed
by date, and each index has a list of bugs. If we were to console.log() nested data, it
would be an array of objects that look like Figure 6-6.

ey "Fri Jan @4 2013 00:00:00 MT-2800 (P5ST)"
¥ wvalues [Object { Date=Date, ID="46250", Severity="Critical®, more.}, Object { Date=Date, ID="46253", Severity=" Mimor®,
mere.. }]

Yo Object { Date-Date, ID=-"46250%, Severity="Critical®, more..}
Date Date { Fri Jan 04 2013 00:00:00 GMT-0800 (PST) }
[+] 46250
Severity *Critical”
Status "Ooen”
Summary *Incorrect icon”

Y1 Object { Date=Date, ID="46253", Severity=" Minor®, more_}
Date Date { Fri Jan 04 2013 00:00:00 CMT-0800 (PST) }

[+ 46253

Soverity " 4
Status d
Summary "Homepage not locding™

Figure 6-6. The array containing our bug data objects

168

CHAPTER 6 VISUALIZING DATA OVER TIME

Drawing on the Page

We are ready to start drawing to the page. So let’s step out of the callback function and go
to the root of the script tag and write out the SVG tag to the page by using the margins,
width, and height that were defined previously:

var svg = d3.select("body").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)

-append("g")
.attr("transform”, "translate(" + margin.left + "," + margin.top + ")");

This is the container in which we draw the axes and the trend lines.

Still at the root level, we add a D3 scale object for both the x- and y-axes, using the
width variable for the x-axis range and the height variable for the y-axis range. We add
the x- and y-axes at the root level, passing in their respective scale objects and orienting
them at the bottom and left.

var xScale = d3.time.scale()
.range([0, width]);

var yScale= d3.scale.linear()
.range([height, 0]);

var xAxis = d3.svg.axis()
.scale(xScale)
.orient("bottom");

var yAxis = d3.svg.axis()
.scale(yScale)
.orient("left");

But they still aren’t showing on the page. We need to return to the anonymous
function that we created in the d3.csv() call and add the nested_data list that we
created as the domain data for the newly created scales:

xScale.domain(d3.extent(nested data, function(d) { return new Date(d.key); }));
yScale.domain(d3.extent(nested data, function(d) { return d.values.length; }));

169

CHAPTER 6 VISUALIZING DATA OVER TIME

From here, we need to generate the axes. We do this by adding and selecting an
SVG g element, used for generic grouping, and adding this selection to the xAxis ()
and yAxis() D3 functions. This also goes in the anonymous callback function that gets
invoked when the data is loaded.

We also need to transform the x-axis by adding the height of the chart so that it is
drawn at the bottom of the graph:

svg.append("g")
.attr("transform”, "translate(o," + height + ")")
.call(xAxis);

svg.append("g")
.call(yAxis)

This creates the start of the chart with meaningful axes shown in Figure 6-7.

70
6.5
6.0
5.5
50
45
40
35
30
2.5

20

10

Jan 06 Jan 13 Jan 20 Jan 27 Feb 03 Feb 10

Figure 6-7. Time series beginning to form; x- and y-axes but no line yet

The trend line needs to be added. Back at the root level, let’s create a variable named
line to be an SVG line. Assume for a minute that we have already set the data property
for the line. We haven’t yet, but we will in a minute. For the x value of the line, we will
have a function that returns the date filtered through the xScale scale object. For the y
value of the line, we will create a function that returns the bug count values run through
the yScale scale object.

170

CHAPTER 6 VISUALIZING DATA OVER TIME

var line = d3.svg.line()
.X(function(d) { return xScale(new Date(d.key)); })
.y(function(d) { return yScale(d.values.length); });

Next, we return to the anonymous function that processes the data. Right below the
added axes, we will append an SVG path. We set the nested_data variable as the datum
for the path and the newly created 1ine object as the d attribute. For reference, the d
attribute is where we specify path descriptions. See here for documentation around the d
attribute: https://developer.mozilla.org/en-US/docs/SVG/Attribute/d.

svg.append("path")
.datum(nested data)
.attr("d", line);

We can now start to see something in a browser. The code so far should look like so:

<IDOCTYPE html>

<head>
<meta charset="utf-8">
</head>
<body>
<script src="d3.v3.js"></script>
<script>

var margin = {top: 20, right: 20, bottom: 30, left: 50},
width = 960 - margin.left - margin.right,
height = 500 - margin.top - margin.bottom;
var parseDate = d3.time.format("%m-%d-%Y").parse;
var xScale = d3.time.scale()
.range([0, width]);
var yScale = d3.scale.linear()
.range([height, 0]);
var xAxis = d3.svg.axis()
.scale(xScale)
.orient("bottom");
var yAxis = d3.svg.axis()
.scale(yScale)
.orient("left");

171

https://developer.mozilla.org/en-US/docs/SVG/Attribute/d

CHAPTER 6 VISUALIZING DATA OVER TIME

var line = d3.svg.line()
.X(function(d) { return xScale(new Date(d.key)); })
.y(function(d) { return yScale(d.values.length); });
var svg = d3.select("body").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
-append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
d3.csv("allbugsOrdered.csv", function(error, data) {
data.forEach(function(d) {
d.Date = parseDate(d.Date);
D;
nested data = d3.nest()
.key(function(d) { return d.Date; })
.entries(data);
xScale.domain(d3.extent(nested data, function(d) { return new
Date(d.key); });
yScale.domain(d3.extent(nested data, function(d) { return
d.values.length; }));
svg.append("g")
.attr("transform”, "translate(0," + height + ")")
.call(xAxis);
svg.append("g")
.call(yAxis);
svg.append("path")
.datum(nested data)
.attr("d", line);
D;
</script>
</body>
</html>

This code produces the graphic shown in Figure 6-8.

172

CHAPTER 6 VISUALIZING DATA OVER TIME

g

April July October

Figure 6-8. Time series with line data but incorrect fill

But this isn’t quite right. The shading of the path is based on the browser’s best guess
of intent, shading what it perceives to be the closed areas. Let’s use CSS to explicitly turn
off shading and instead set the color and width of the path line:

<style>

.trendLine {

fill: none;

stroke: #CC0000;
stroke-width: 1.5px;
}

</style>

We created a style rule for any element on the page with the class trendLine. Let’s
next add the class to the SVG path in the same block of code in which we create the path:

Svg.append("path")
.datum(nested data)
.attr("d", line)
.attr("class", "trendLine");

173

CHAPTER 6 VISUALIZING DATA OVER TIME
This code produces the chart shown in Figure 6-9.

30
28
26
24
22

20

April July October 2021 April

Figure 6-9. Time series with corrected line but unstyled axes

Looking much better! There are some minor things we should change, such as adding
text labels to the y-axis and trimming the width of the axis lines to make them neater:

.axis path{

fill: none;

stroke: #000;
shape-rendering: crispEdges;

}

This will give us tighter-looking axes. We just need to apply the style to the axes when
we create them:

svg.append("g")
.attr("transform", "translate(0," + height + ")")
.call(xAxis)
.attr("class", "axis");
svg.append("g")
.call(yAxis)
.attr("class", "axis");

174

CHAPTER 6 VISUALIZING DATA OVER TIME

The results can be seen in Figure 6-10.

30
28
26
24
22

20

April July October 2021 April

Figure 6-10. Time series updated with styled axes

This is great so far, but it shows no real benefit from doing this in R. In fact, we wrote
quite a bit of additional code just to get parity and didn’t even do any data cleaning that
we did in R.

The real benefit of using D3 is adding interactivity.

Adding Interactivity

Say we have this time series of new bugs, and we were curious what the bugs were in
that large spike in mid-February. By taking advantage of the fact that we are working in
HTML and JavaScript, we can extend this functionality by adding in a tooltip box that
lists the bugs for each date.

To do this, we first should create obvious areas in which users can mouse over, such
as red circles at each data point or discrete date. To do that, we simply need to create
SVG circles right below where we added in the path, in the anonymous function that
is fired when the external data is read in. We set the nested _data variable as the data
attribute of the circles, make them red with a radius of 3.5, and set their x and y attributes
to be tied to the date and bug totals, respectively:

175

CHAPTER 6 VISUALIZING DATA OVER TIME

svg.selectAll("circle")
.data(nested data)
.enter().append("circle")
.attr("r", 3.5)
.attr("fill", "red")
.attr("cx", function(d) { return xScale(new Date(d.key)); })
.attr("cy", function(d) { return yScale(d.values.length);})

This code updates the existing time series so it looks like Figure 6-11. These red
circles are now areas of focus in which users can mouse over and see additional
information.

30 1 1
28
26
24
22

20 y L [I L H‘ p y L r

1.0 MI - &

April Tuly October 2021 April

Figure 6-11. Circles added to each data point on the line

Let’s next code up a div to act as the tooltip that we will show with relevant bug data.
To do this, we will create a new div, right below where we created the line variable at
the root of the script tag. We do this in D3 once again by selecting the body tag and
appending a div to it, giving it a class and id of tooltip—both so that we can have the
tooltip style apply to it (which we will create in just a minute) and so we can interact
with it by ID later on in the chapter. We will have it hidden by default. We will store a
reference to this div in a variable that we will call tooltip.

176

CHAPTER 6 VISUALIZING DATA OVER TIME

var tooltip = d3.select("body")
.append("div")
.attr("class", "tooltip")
.attr("id", "tooltip")
.style("position", "absolute")
.style("z-index", "10")
.style("visibility", "hidden");

We next need to style this div using CSS. We adjust the opacity to be only 75 percent
visible, so that when the tooltip shows up over a trend line, we can see the trend line
behind it. We align the text, set the font size, make the div have a white background, and

give it rounded corners.

.tooltip{
opacity: .75;
text-align:center;
font-size:12px;
width:100px;
padding:5px;
border:1px solid #a8b6ba;
background-color:#fff;
margin-bottom:5px;
border-radius: 19px;
-moz-border-radius: 19px;
-webkit-border-radius: 19px;

We next have to add a mouseover event handler to the circles to populate the tooltip
with information and unhide the tooltip. To do this, we return to the block of code in
which we created the circles and add in a mousemove event handler that fires off an
anonymous function.

Inside the anonymous function, we overwrite the innerHTML of the tooltip to display
the date of the current red circle and how many bugs are associated with that date. We
then loop through that list of bugs and write out the ID of each bug.

svg.selectAll("circle")
.data(nested data)
.enter().append("circle")

177

CHAPTER 6 VISUALIZING DATA OVER TIME

.attr("r", 3.5)

.attr("fill", "red")

.attr("cx", function(d) { return xScale(new Date(d.key)); })
.attr("cy", function(d) { return yScale(d.values.length);})
.on("mouseover", function(d){
document.getElementById("tooltip").innerHTML = d.key + " " + d.values.
length + " bugs
";

for(x=0;x<d.values.length;x++){
document.getElementById("tooltip").innerHTML += d.values[x].ID + "<bx/>";
}

tooltip.style("visibility", "visible");

9

If we want to take this even further, we can create links for each bug ID that link
back to the bug-tracking software, list descriptions of each bug, and if the bug-tracking
software has an API to interface with, we can even have form fields that could let us
update bug information right from this tooltip. Only our imagination and the tools
available to us limit the possibilities of how far we can extend this concept.

Finally, we add a mousemove event handler to the red circles so that we can reposition
the tooltip contextually whenever the users mouse over a red circle. To do this, we use
the d3.mouse object to get the current mouse coordinates. We use these coordinates to
simply reposition the tooltip with CSS. So we don’t cover the red circle with the tooltip,
we offset the top property by 25 pixels and the left property by 75 pixels.

svg.selectAll("circle")

.data(nested data)

.enter().append("circle")

Lattr("r", 3.5)

.attr("fill", "red")

.attr("cx", function(d) { return xScale(new Date(d.key)); })
.attr("cy", function(d) { return yScale(d.values.length);})
.on("mouseover", function(d){
document.getElementById("tooltip").innerHTML = d.key +
length + " bugs
";

for(x=0;x<d.values.length;x++){
document.getElementById("tooltip").innerHTML += d.values[x].ID + "
";

+ d.values.

178

CHAPTER 6 VISUALIZING DATA OVER TIME

}

tooltip.style("visibility", "visible");

9

.on("mousemove", function(){

return tooltip.style("top", (d3.mouse(this)[1] + 25)+"px").style("left",
(d3.mouse(this)[0] + 70)+"px");

IOk

A tooltip should display when the mouse hovers over one of the red circles (see
Figure 6-12).
3.0 ’
Tue Jan 12 2021
00:00:00 GMT-

0600 (CST) 3

28 bugs
DE45102

DE45224
26 DE45247

24
22
2.0 r ¢ *re 0 9 Y ” T y T y [r
1.8
1.6
1.4

| UL | |

April July "~ October 2021 April

Figure 6-12. Completed time series with rollover shown

The complete source code should now look like this:

<!DOCTYPE html>

<html>

<meta charset="utf-8">
<head>

<style>

body {

font: 15px sans-serif;

}

179

CHAPTER 6 VISUALIZING DATA OVER TIME

.trendlLine {

fill: none;

stroke: #CC0000;
stroke-width: 1.5px;

}

.axis path{

fill: none;

stroke: #000;
shape-rendering: crispEdges;

}

.tooltip{
opacity: .75;
text-align:center;
font-size:12px;
width:100px;
padding:5px;
border:1px solid #a8bébba;
background-color:#fff;
margin-bottom:5px;
border-radius: 19px;
-moz-border-radius: 19px;
-webkit-border-radius: 19px;

}

</style>

</head>

<body>

<script src="d3.v3.js"></script>
<script>

var margin = {top: 20, right: 20, bottom: 30, left:

width = 960 - margin.left - margin.right,

height = 500 - margin.top - margin.bottom;
var parseDate = d3.time.format("%m/%d/%y").parse;
var xScale = d3.time.scale()

.range([0, width]);
var yScale = d3.scale.linear()

.range([height, 0]);

180

50},

CHAPTER 6 VISUALIZING DATA OVER TIME

var xAxis = d3.svg.axis()
.scale(xScale)
.orient("bottom");

var yAxis = d3.svg.axis()
.scale(yScale)
.orient("left");

var line = d3.svg.line()

.X(function(d) { return xScale(new Date(d.key)); })

.y(function(d) { return yScale(d.values.length); });
var tooltip = d3.select("body")

.append("div")

.attr("class", "tooltip")

.attr("id", "tooltip")

.style("position", "absolute")

.style("z-index", "10")

.style("visibility", "hidden");
var svg = d3.select("body").append("svg")

.attr("width", width + margin.left + margin.right)

.attr("height", height + margin.top + margin.bottom)

-append("g")

.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
d3.csv("https://jonwestfall.com/data/allbugsOrdered.csv”, function(error,
data) {

data.forEach(function(d) {
d.Date = parseDate(d.Date);

D;

nested data = d3.nest()

.key(function(d) { return d.Date; })
.entries(data);

xScale.domain(d3.extent(nested data, function(d) { return new

Date(d.key); }));

yScale.domain(d3.extent(nested data, function(d) { return

d.values.length; }));

svg.append("g")

.attr("transform", "translate(o," + height + ")")

181

CHAPTER 6 VISUALIZING DATA OVER TIME

.call(xAxis)
.attr("class", "axis");
svg.append("g")
.call(yAxis)
.attr("class", "axis");
svg.append("path")
.datum(nested_data)
.attr("d", line)
.attr("class", "trendLine");
svg.selectAll("circle")
.data(nested data)
.enter().append("circle")
.attr("r", 3.5)
.attr("fill", "red")
.attr("cx", function(d) { return xScale(new Date(d.key)); })
.attr("cy", function(d) { return yScale(d.values.
length);})

.on("mouseover", function(d){
document.getElementById("tooltip").
innerHTML = d.key + " " + d.values.length
+ " bugs
";
for(x=0;x<d.values.length;x++){

document.getElementById
("tooltip").innerHTML +=
d.values[x].ID + "<bx/>";
}
tooltip.style("visibility", "visible");
1))
.on("mousemove", function(){
return tooltip.style("top", (d3.mouse(this)
[1] + 25)+"px").style("left", (d3.
mouse(this)[0] + 70)+"px");
¥
}s

182

CHAPTER 6 VISUALIZING DATA OVER TIME

</script>
</body>
</html>

Summary

This chapter explored time series plots, both philosophically and in the context of using
them to track bug creation over time. We exported the raw bug data from the bug-
tracking software of choice and imported it into R to scrub and analyze.

Within R, we looked at different ways we could model and visualize the data, looking
at both aggregate and granular details such as how the new bugs contribute to a running
total over time or when new bugs are introduced over time. This is especially valuable
when we can put context to the dates we are looking at.

We then read the data into D3 and created an interactive time series that allowed us
to drill down from the high-level trend data into very granular details around each bug
created.

The next chapter explores creating bar charts and how to use them to identify areas
of focus and improvement.

183

CHAPTER 7

Bar Charts

Chapter 6 explored using time series charts to look at defect data over time, and this
chapter looks at bar charts, which display ordinal or ranked data relative to a specific
data set. They usually consist of an x- and y-axis and have bars or colored rectangles to
indicate values of categories.

William Playfair created the bar chart in the first edition of The Commercial and
Political Atlas in 1786 to show Scotland’s import and export data to and from different
parts of the world (see Figure 7-1). He created it out of necessity; the other charts in
the atlas were time series charts demonstrating hundreds of years’ worth of trade data,
but for Scotland, there was only one year’s worth of data. While using the time series
chart, Playfair saw it as an inferior visualization; a compromise with resources on hand
because it “does not comprehend any portion of time, and it is much inferior in utility to
those that do” (Playfair, 1786, p. 101).

185
© Tom Barker, Jon Westfall 2022

T. Barker and J. Westfall, Pro Data Visualization Using R and JavaScript,
https://doi.org/10.1007/978-1-4842-7202-2_7

https://doi.org/10.1007/978-1-4842-7202-2_7#DOI

CHAPTER 7 BAR CHARTS

Exports and lmports of SCOTLAND w© and from differeat parts for one Year from Chinfbmuae 1780 to Chndtmas yé .

T
— m—— —— — — E— - _
10 30 30 46 o 6o 7o 80 .99_',19_40_, Mo o o . s _m0 me _ sfo ato Lsepor H
! P R N A N TR N VUG A SR 0 SR
i P) b Mawsar of Placar. |
- i R B el S P) - i I
__|._{._._. booh) b e i — —
i i | i o Jeney Kol !
T o ' { - S . P B T S B e ar :
. ! [oo P = } tedand
CAINA . be - N - L SN AP, T SN [S i- ey - SR B SN Sy .4
™= P : i I ; [A fland i
AR f | | | LT T saspatm
- _'. . T | . b ———— ste omm s
—]

The ! pright divyfions are Ten Thowfand Founds cach . The llack Lines are £xpores the Srdbeel bnas lrmporte.
B ki e St rrw furs 3% 5700 be W Phardia Mok e * IS8 Sarwnst | L andens

Figure 7-1. William Playfair’s bar chart showing Scotland’s import and export data

Playfair initially thought so little of his invention that he didn’t bother to include it in
the subsequent second and third editions of the atlas. He went on to envision a different
way to show parts of a whole; in doing so, he invented the pie chart for his Statistical
Breviary published in 1801.

The bar chart is a great way to demonstrate ranked data not only because bars are
a clear way to show differences in value but the pattern can also be extended to include
more data points by using different types of bar charts such as stacked bar charts and
grouped bar charts.

Standard Bar Chart

Let’s take data that you are already familiar with—the bugsBySeverity data from the last
chapter:

head(bugsBySeverity)

186

1/11/21
1/12/20
1/12/21
1/13/20
1/17/21
1/18/21

CHAPTER 7 BAR CHARTS

Blocker Minor Moderate

0

O N B B O

1

o O O N -

r O O O O O

You can create a new list with a sum of each bug type and visualize the totals in a bar

chart like so:

totalBugsBySeverity <- c(sum(bugsBySeverity[,1]), sum(bugsBySeverity[,2]),

sum(bugsBySeverity[,3]))

barplot(totalBugsBySeverity, main="Total Bugs by Severity")
axis(1, at=1: length(totalBugsBySeverity), lab=c("Blocker", "Critical",

"Minor"))

This code produces the chart shown in Figure 7-2.

80

60

40

20

Total Bugs by Severity

 ° 1
Blocker Critical Minor

Figure 7-2. Bar chart of bugs by severity

187

CHAPTER 7 BAR CHARTS

Stacked Bar Chart

Stacked bar charts allow us to show subsections or segments within categories. Suppose
you use the bugsBySeverity time series data and want to look at the breakdown of the
criticality of the new bugs opened each day:

t(bugsBySeverity)

1/11/21 1/12/20 1/12/21 1/13/20 1/17/21 1/18/21 1/2/21 1/21/20 1/22/20

Blocker 0 0 1 1 2 0 0 1 1
Minor 1 1 2 0 0 0 1 0 0
Moderate 0 0 0 0 0 1 0 0 0

1/24/20 1/24/21 1/25/20 1/27/21 1/29/21 1/3/20 1/4/20 1/5/20 1/5/21

Blocker 0 0 1 0 0 0 0 0 0
Minor 1 1 0 1 0 1 1 1 1
Moderate 0 0 0 0 1 0 0 0 0

1/9/20 10/1/20 10/10/20 10/15/20 10/16/20 10/18/20 10/21/20 10/25/20

Blocker 1 0 0 1 0 0 0 1
Minor 0 1 0 0 1 0 1 0
Moderate 0 0 1 0 0 2 1 0

10/26/20 10/29/20 10/30/20 10/6/20 11/17/20 11/18/20 11/19/20 11/21/20

Blocker 0 1 0 0 0 1 0 0
Minor 0 0 1 1 1 0 1 1
Moderate 1 1 0 0 0 0 0 0

11/23/20 11/26/20 11/4/20 11/8/20 12/14/20 12/15/20 12/17/20 12/21/20

Blocker 0 2 1 1 1 1 0 1
Minor 1 0 1 0 0 0 1 0
Moderate o0 0 0 0 1 0 0 0

12/22/20 12/23/20 12/24/20 12/27/20 12/29/20 12/3/20 12/31/20 2/12/21

Blocker 1 0 1 0 0 1 0 1
Minor 0 1 0 0 1 0 1 0
Moderate 1 0 0 1 0 0 0 0

188

CHAPTER 7 BAR CHARTS

2/13/21 2/14/20 2/15/20 2/15/21 2/16/20 2/22/21 2/24/20 2/25/21

Blocker 0 1 0 1 1 1 1 0
Minor 0 0 1 0 0 1 0 1
Moderate 1 0 0 0 0 0 0 0

2/26/21 2/28/21 2/3/21 2/4/21 2/8/21 3/1/20 3/1/21 3/11/21 3/14/21

Blocker 1 1 1 1 1 0 1 2 0
Minor 1 0 0 0 0 0 0 1 1
Moderate 0 0 0 0 0 2 0 0 0

3/17/21 3/2/20 3/2/21 3/22/20 3/23/21 3/24/20 3/25/21 3/26/20 3/28/20

Blocker 1 1 1 1 0 0 1 0 1
Minor 0 0 0 1 1 0 0 1 0
Moderate 0 0 0 0 0 1 0 0 0

3/3/21 3/31/20 3/31/21 3/6/21 3/7/20 3/7/21 4/12/21 4/13/20 4/15/21

Blocker 1 0 1 1 0 0 0 0 0
Minor 0 0 0 0 0 0 0 1 0
Moderate 0 1 0 0 1 1 1 0 1

4/18/21 4/19/21 4/20/20 4/25/20 4/26/21 4/27/20 4/29/21 4/4/20 4/5/21

Blocker O 0 1 0 1 1 1 0 2
Minor 2 1 0 1 0 0 0 1 1
Moderate 0 0 0 0 0 0 0 0 0

4/7/20 4/8/20 5/1/20 5/10/20 5/11/21 5/12/20 5/14/21 5/16/21 5/17/20

Blocker 1 1 2 0 1 1 0 1 1
Minor 0 0 0 1 0 1 1 0 0
Moderate 0 1 0 0 0 0 0 0 0

5/17/21 5/2/21 5/20/20 5/20/21 5/22/20 5/24/21 5/25/20 5/26/21 5/27/20

Blocker 1 1 0 1 2 0 0 1 1
Minor 0 0 0 0 0 1 0 0 0
Moderate 0 0 1 1 0 0 1 0 0

5/27/21 5/28/20 5/28/21 5/29/21 5/30/20 5/31/20 5/6/20 5/8/20 6/11/20

Blocker 1 0 1 2 1 1 0 1 1
Minor 0 1 0 0 0 0 1 0 0
Moderate 0 0 0 0 0 0 0 0 0

189

CHAPTER 7 BAR CHARTS

6/11/21 6/14/20 6/16/21 6/2/21 6/20/20 6/28/20 6/3/20 6/3/21 6/4/20

Blocker 1 1 2 1 1 1 0 1 0
Minor 0 0 0 0 0 0 0 0 1
Moderate 0 0 0 0 0 0 1 0 0

6/4/21 6/6/21 6/7/20 6/7/21 6/8/21 6/9/21 7/14/20 7/18/20 7/2/20

Blocker o 1 0 1 0 0 1 2 0
Minor 1 0 1 0 1 1 0 0 1
Moderate 0 0 1 0 0 0 0 0 0

7/22/20 7/23/20 7/25/20 7/28/20 7/29/20 7/9/20 8/10/20 8/17/20 8/2/20

Blocker 1 0 0 1 0 0 0 0 0
Minor 0 1 0 0 1 1 1 0 1
Moderate 0 0 1 0 0 0 0 2 0

8/21/20 8/22/20 8/23/20 8/24/20 8/26/20 8/27/20 8/28/20 8/29/20 8/3/20

Blocker 1 0 0 2 1 0 0 1 0
Minor 0 0 1 0 0 1 1 0 1
Moderate 0 1 0 0 0 0 0 0 0

8/6/20 9/10/20 9/11/20 9/14/20 9/16/20 9/2/20 9/21/20 9/8/20

Blocker 1 1 1 0 0 0 0 0
Minor 0 0 0 0 0 1 1 0
Moderate 0 0 0 1 1 0 0 1

You can represent the following data with a stacked bar chart, as shown in Figure 7-3:

barplot(t(bugsBySeverity), col=c("#CCCCCC", "#666666", "#AAAAAA"))
legend("topleft", inset=.01, title="Legend", c("Blocker", "Criticals",
"Minors"), fill=c("#CCCCCC", "#666666", "HAAAAAA"))

190

CHAPTER 7 BAR CHARTS

e L .,
o)
Legend
0 O Blocker
~ @ Criticals
0O Minors
o
o™~
w |
<]
w |
o
<
o

1/11/21 10/6/20 2/26/21 4/20/20 5/30/20 7/9/20

Figure 7-3. Stacked bar chart of bugs by severity and date. The bars are not all of
the same height, since the total number of bugs each day differs

The total bugs are represented by the full height of the bar, and the colored segments
of each bar represent the criticality of the bugs. Stacked bar charts allow us to show
nuance in our data, although one may want to reduce the number of dates to get a

clearer picture when visualizing.

Grouped Bar Chart

Grouped bar charts allow us to show the same nuance as stacked bar charts, but instead
of placing the segments on top of each other, we split them into side-by-side groupings.
Figure 7-4 shows that each date on the x-axis has three bars associated with it, one for
each criticality category:

barplot(t(bugsBySeverity), beside=TRUE, col=c("#CCCCCC", "#666666",
"HAAAAAA"))

legend("topleft", inset=.01, title="Legend", c("Blocker", "Criticals",
"Minors"), fill=c("#CCCCCC", "#666666", "#AAAAAA"))

191

CHAPTER 7 BAR CHARTS

o
Nl
Legend
O Blocker
© @ Criticals
~ T/ @ Minors
<
uwy
2
D —
o

1/11/21 10/6/20 2/26/21 4/20/20 5/30/20 7/9/20

Figure 7-4. Grouped bar chart of bugs by severity and date

At a glance, it may appear that Figures 7-3 and 7-4 are identical, due to the density of
the data. To avoid this, we can use the following code to reduce the number of data points
to just show us five days’ worth of data. Try using both snippets to see the changes.

barplot(t(bugsBySeverity[1:10,]), col=c("#CCCCCC", "#666666", "#AAAAAA"))
legend("topleft", inset=.01, title="Legend", c("Blocker", "Criticals",
"Minors"), fill=c("#CCCCCC", "#666666", "#AAAAAA"))

Versus

barplot(t(bugsBySeverity[1:10,]), beside=TRUE, col=c("#CCCCCC", "#666666",
"#AAAAAA"))

legend("topleft", inset=.01, title="Legend", c("Blocker", "Criticals",
"Minors"), fill=c("#CCCCCC", "#666666", "HAAAAAA"))

Visualizing and Analyzing Production Incidents

If you work on a product that gets used by someone—an end user, a consuming service,
or even an internal customer—you most likely have experienced a production incident.
Production incidents occur when some part of an application misbehaves for a user in

production. It is very much like a bug, but it is a bug that is experienced and reported by

your customer.

192

CHAPTER 7 BAR CHARTS

Just like bugs, production incidents are normal and expected results of software
development. There are three main things to think about when talking about incidents:

¢ Severity, or how impactful is the error being reported: There is a
big difference between a site outage and a small layout error.

» Frequency, or how often incidents are occurring or recurring: If
your web app is riddled with issues, your customer experience, your
brand, and your regular flow of work are all affected.

e Duration, or how long individual incidents linger: The longer they
linger, the more customers are affected, and the worse the impact on
your brand.

Handling production incidents is a big part of operationalizing your products and
maturing your organization. Depending on how severe the incidents are, they can be
disruptive to your regular body of work; the team might need to stop everything and
work on a fix for the issue. Lesser-priority items can be queued and introduced to the
regular body of work alongside regular feature work.

Just as important as handling production incidents is being able to analyze trends in
production incidents to identify problem areas. Problem areas are usually features or sections
that have frequent issues in production. Once we have identified problem areas, we can do root
cause analysis and potentially start to build proactive scaffolding around these areas.

Note Proactive scaffolding is a term | have coined that describes building
failovers or additional safety rails to prevent issues in problem areas from
recurring. Proactive scaffolding can be anything from detecting when users are
close to capacity limits (such as the browser cookie limit or application heap size
and correcting before an issue happens) to noting performance issues with
third-party assets and intercepting and optimizing them before they are presented
to a client.

Another interesting way to handle production incidents is how Heroku used to
handle them in the past: putting them up on a timeline along with a visualization of
month-over-month uptime and making it publicly available. Heroku’s production
incident timeline was available at https://status.heroku.com/; see Figure 7-5.

193

https://status.heroku.com/;

CHAPTER 7 BAR CHARTS

A" Sutecribe tn Mot fcations

heroku status
current status and incident report

Figure 7-5. Heroku status page

194

CHAPTER 7 BAR CHARTS

GitHub also used to have a great status page that visualizes key metrics around
their performance and uptime (see Figure 7-6). Ironically, they've now switched to the
timeline approach that Heroku abandoned (see Figure 7-7, from www.githubstatus.
com/history).

195

http://www.githubstatus.com/history
http://www.githubstatus.com/history

CHAPTER 7 BAR CHARTS

ghhub; 1alt UPDATED LESS THAN A NOWTE 260

TEITUTE e
Gk

3 ang More Status History «
od 1 zap

‘What is this site?

W cominuoush morior T 84t of grinub com and all s related senvices. I Mhore ore any
Warmons in seevion, A nOte wil e poated B, 1 you am sxparencing protiems conrectng o
GtHub anc do ot soo 3 notice poated, pleate erad wpeon @gtnut: corr

Getubcom Awaslablity Mormal

Srorago Avalebity Normal

GitHabs Pages Availability Normal

AP Availability Nocmal

Gode Covmicacs Normal
What are these graphs?

Thasa graghe oro sampled parodcaly from our own miamal matncs sbout the pedormanca and
svaiabiity of GiHub services. They'm acoirets Lo within a lew minutes,

Past Day Past Woek Past Montn

APP SERVER AVAILABILITY " Y '

99.7232%

MEAN WED RESPONSE TIME

88ms SR S W |

MEAN API RESPONSE TIME

34ms ik

SETH PERC, WEB RESPONSE TIME

404ms .. L

PAGES BURLDS FAILURE RATE

2297% oAbt

EXCEFTION PERCENTAGE

0.0%

MEAN HOOX DELIVERY TIME

The Gittub Blog

© 2013 GEMub Inc. Al rights resarvaed

Figure 7-6. GitHub status page

196

CHAPTER 7 BAR CHARTS

Incident History

< April 2021 to June 2021

June 2021

® Incident with GitHub Actions
This incident has been resolved.
Jun 21, 07:35 - 08:11 UTC

® Incident with GitHub Actions
This incident has been resolved.
Jun 18, 16:18 - 18:23 UTC

® Incident with GitHub Packages
This incident has been resolved.
Jun 17, 15:01 - 16:51 UTC

+ Show All 8 Incidents

Figure 7-7. GitHub’s timeline

For our purposes, this chapter uses bar charts to look at production incidents by
feature to start to identify problem areas within our own products.

Plotting Data on a Bar Chart with R

If we want to plot out our production incidents, we must first get an export of the
data, just as we needed to do for bugs. Because production incidents are generally
single-hit items, companies usually use a range of methods to track them, from
ticketing systems such as Jira (waw.atlassian.com/software/jira/overview) to
maintaining a spreadsheet of items, whatever works—as long as we can retrieve the
raw data. (Jon has made sample data available here: http://jonwestfall.com/data/
productionincidents.csv.)

Once we have the raw data, it probably looks something like the following: a comma-
separated flat list with columns for an ID, a date stamp, and a description. There also
should be a column that lists the feature or section of the application in which the
incident occurred.

197

http://www.atlassian.com/software/jira/overview
http://jonwestfall.com/data/productionincidents.csv
http://jonwestfall.com/data/productionincidents.csv

CHAPTER 7 BAR CHARTS

ID,DateOpened,DateClosed,Description, Feature, Severity

880373,5/22/21 10:14,5/25/21 11:52,Fwd: 2 new e-books Associate
Editors,General Inquiry,1

837947,4/29/21 12:35,5/7/21 14:09,Fwd: New Resource to Post,General
Inquiry,2

489036,4/23/21 14:38,4/27/21 9:00,STP ebook editor with finished
book,General Inquiry,1

443617,1/25/21 17:43,1/26/21 8:49,New member - IRC Committee at STP,General
Inquiry,2

911894,1/18/21 10:25,1/20/21 8:51,Fwd: Updates to International Relations
Committee page,General Inquiry,1

974124,1/11/21 14:55,1/12/21 10:55,Fwd: New Resource to Post,General
Inquiry,2

341352,1/2/21 10:51,1/5/21 16:26,New eBooks,eBook Publishing,1

Let’s read the raw data into R and store it in a variable called prodData:

> prodIncidentsFile <- "http://jonwestfall.com/data/productionincidents.csv";
> prodData <- read.table(prodIncidentsFile, sep=",", header=TRUE)
> prodData
1D DateOpened DateClosed Description
Feature Severity
1 880373 5/22/21 10:14 5/25/21 11:52 Fwd: 2 new e-books Associate Editors
General Inquiry 1
2 837947 4/29/21 12:35 5/7/21 14:09 Fwd: New Resource to Post
General Inquiry 2
3 489036 4/23/21 14:38 4/27/21 9:00 STP ebook editor with finished book
General Inquiry 1
4 443617 1/25/21 17:43 1/26/21 8:49 New member - IRC Committee at STP
General Inquiry 2
5 911894 1/18/21 10:25 1/20/21 8:51 Fwd: Updates to International
Relations Committee page
General Inquiry 1
6 974124 1/11/21 14:55 1/12/21 10:55 Fwd: New Resource to Post
General Inquiry 2
7 341352 1/2/21 10:51 1/5/21 16:26 New eBooks
eBook Publishing 1

198

CHAPTER 7 BAR CHARTS

We want to group them by the Feature column so that we can chart feature totals.
To do this, we use the aggregate() function in R. The aggregate() function takes an
R object, a list to use as grouping elements, and a function to apply to the grouping
elements. So suppose we call the aggregate() function, pass in the ID column as the
R object, have it grouped by the Feature column, and have R get the length for each
feature grouping:

prodIncidentByFeature <- aggregate(prodData$ID, by=list(Feature=prodData$Fe
ature), FUN=length)

This code creates an object that looks like the following:

> prodIncidentByFeature
Feature x

1 eBook Publishing 1

2 General Inquiry 6

We can then pass this object into the barplot () function to get the chart shown in
Figure 7-8.

barplot(prodIncidentByFeature$x)

o -

Figure 7-8. Beginning a bar chart

199

CHAPTER 7 BAR CHARTS

This is a nice start and does tell a story, but it’s not very descriptive. Besides the fact
that the x-axis isn’t labeled, the problem areas are obscured by not ordering the results.

Ordering Results

Let’s use the order () function to order the results by the total count of each incident by
feature:

prodIncidentByFeature <- prodIncidentByFeature[order(prodIncidentByFeature$x),]

We can then format the bar chart to highlight this ordering by layering the bars
horizontally and rotating the text 90 degrees.

To rotate the text, we must change our graphical parameters using the par ()
function. Updating the graphical parameters has global implications, meaning that
any chart that we create after updating inherits the changes, so we need to preserve
the current settings and reset them after we create our bar chart. We store our current
settings in a variable that we call opar:

opar <- par(no.readonly=TRUE)

Note If you are following along in an R command line, the previous line by itself
does not generate anything; it just sets graphical parameters.

We then pass new parameters into the par () call. We can use the 1las parameter to
format the axis. The las parameter accepts the following values:

par(las=3)
¢ 0isthe default behavior where the text is parallel to the axis.
o 1 explicitly makes the text horizontal.
o 2 makes the text perpendicular to the axis.
o 3 explicitly makes the text vertical.

We then call barplot() again, but this time pass in the parameter horiz=TRUE, to
have R draw the bars horizontally instead of vertically:

200

CHAPTER 7 BAR CHARTS

barplot(prodIncidentByFeature$x, xlab="Number of Incidents", names.ar
g=prodIncidentByFeature$Feature, horiz=TRUE, space=1, cex.axis=0.6, cex.
names=0.8, main="Production Incidents by Feature", col= "#CCCCCC")

And, finally, we restore the saved settings so that future charts don't
inherit this chart's settings:
> par(opar)

This code produces the visualization shown in Figure 7-9.

Production Incidents by Feature

General Inquiry

eBook Publishing

Number of Incidents

Figure 7-9. Bar chart of production incidents by feature

From this chart, you can see that the biggest problem area is the category labeled
General Inquiry, followed by eBook Publishing.

201

CHAPTER 7 BAR CHARTS

Creating a Stacked Bar Chart

How severe are the issues around these features? Let’s next create a stacked bar chart to
see the breakdown of severity for each production incident. To do that, we must create
a table in which we break down our production incidents by feature and by severity. We
can use the table() function for this, as we did for bugs in the last chapter:

prodIncidentByFeatureBySeverity <- table(factor(prodData$Feature),prodData$
Severity)

This code creates a variable formatted as shown in Figure 7-10, with rows
representing each feature and columns representing each level of severity:

prodIncidentByFeatureBySeverity

12

eBook Publishing 1 0

General Inquiry 3 3
opar <- par(no.readonly=TRUE)
par(las=3, mar=c(5,5,5,5))
barplot(t(prodIncidentByFeatureBySeverity), xlab="Number of Incidents”,
names.arg=rownames (prodIncidentByFeatureBySeverity), horiz=TRUE, space=1,
cex.axis=0.6, cex.names=0.8, main="Production Incidents by Feature",
col=c("#CCCCCC", "#666666", "#AAAAAA", "#333333"))
legend("bottom", inset=.01, title="Legend", c("Sevi", "Sev2"),
fill=c("#CCCCCC", "#666666"))
par (opar)

202

CHAPTER 7 BAR CHARTS

Production Incidents by Feature

el

S

[=2

£

®

@

c

8

£

£=

@

§ Legend

_~§ O Sevi

@ B Sev2
| | 1 1 I 1 1
(=4 -] “ - wr w

Number of Incidents

Figure 7-10. Stacked bar chart of production incidents by feature and by severity

Interesting! We lost our ordering, but that’s because we have a number of new
data points to choose from. High-level aggregates are less relevant for this chart; more
important is the breakdown of severity.

Bar Charts in D3

So now you know the benefits of having bar charts to aggregate data at a high level and
of getting the granular breakdown that stacked bar charts can expose. Let’s switch gears
and use D3 to see how to create a high-level bar chart that allows us to drill into each bar
to see a granular representation of the data at runtime.

We start by creating a bar chart in D3, version 3, and then create a stacked bar chart.
When our users mouse over the bar chart, we will overlay the stacked bar chart to show
how the data is broken down in real time.

203

CHAPTER 7 BAR CHARTS

Creating a Vertical Bar Chart

Because we made a horizontal bar chart in D3 back in Chapter 4, we will now make a
vertical bar chart. Following the same pattern that we established in previous chapters,
we first create a base HTML skeletal structure that includes a link to the D3 version 3
library. We use the same base style rules that we used in the last chapter for body text
and axis path and an additional rule to color all elements within a bar class a dark gray.

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title></title>
<script src="d3.v3.js"></script>
<style type="text/css">
body {
font: 15px sans-serif;
}
.axis path{
fill: none;
stroke: #000;
shape-rendering: crispEdges;
}
.bar {
fill: #666666;
}
</style>
</head>
<body></body>
</html>

Next, we create the script tagto hold all the charting code and the initial set of
variables to hold the sizing information: the base height and width, D3 scale objects for
the x- and y-coordinate information, an object to hold the margin information, and an
adjusted height value that takes the top and bottom margins out of the total height:

204

CHAPTER 7 BAR CHARTS

<script>
var w = 960,
h = 500,
x = d3.scale.ordinal().rangeRoundBands([0, w]),

y = d3.scale.linear().range([0, h]),
z = d3.scale.ordinal().range(["1lightpink", "darkgray", "lightblue"])
margin = {top: 20, right: 20, bottom: 30, left: 40},
adjustedHeight = 500 - margin.top - margin.bottom;
</script>

We next create the x-axis object. Remember from previous chapters that the axis is
not yet drawn, so we need to call it later within the Scalable Vector Graphics (SVG) tag
that we will create to draw the axis:

var xAxis = d3.svg.axis()
.scale(x)
.orient("bottom");

Let’s draw the SVG container to the page. This will be the parent container for
everything else that we will draw to the page.

var svg = d3.select("body").append("svg")
.attr("width", w)
.attr("height", h)
.append("g")

The next step is to read in the data. We will use the same data source as our R
example: the flat file productionIncidents.txt. We can read this in using the d3.csv()
function to read in and parse the file. Once the contents of the file are read in, they are
stored in the variable data, but if any error occurs, we will store the error details in a
variable that we call error.

d3.csv("http://jonwestfall.com/data/productionincidents.csv",
function(error, data) {

}

Within the scope of this d3.csv() function is where we will put the majority of our
remaining functionality because that functionality depends on having the data proceed.

205

CHAPTER 7 BAR CHARTS

Let’s aggregate the data by feature. To do this, we use the d3.nest () function and set
the key to the Feature column:

nested data = d3.nest()
.key(function(d) { return d.Feature; })
.entries(data);

This code creates an array of objects.

Within this array, each object has a key that lists the feature and an array of objects
that list each production incident.

We use this data structure to create the core bar chart. We make a function to do this:

function barchart(){
}

In this function, we set the transform attribute of the svg element, which sets the
coordinates to contain the image that will be drawn. In this case, we constrain it to the
margin left and top values:

svg.attr("transform”, "translate(" + margin.left + "," + margin.top + ")");

We also create scale objects for the x- and y-axes. For bar charts, we generally use
ordinal scales for the x-axis because they are used for discrete values such as categories.
More information about ordinal scales in D3 can be found in the documentation at
https://github.com/mbostock/d3/wiki/Ordinal-Scales

We also create scale objects to map the data to the bounds of the chart:

var xScale = d3.scale.ordinal()
.rangeRoundBands ([0, w], .1);
var yScale = d3.scale.linear()
.range([h, 0]);
xScale.domain(data.map(function(d) { return d.key; }));
yScale.domain([0, d3.max(nested data, function(d) { return d.values.

length; })1);

We next need to draw the bars. We create a selection based on the Cascading Style
Sheets (CSS) class that we assign to the bars. We bind the nested_data to the bars, create
SVG rectangles for each key value in nested_data, and assign the bar class to each

206

https://github.com/mbostock/d3/wiki/Ordinal-Scales

CHAPTER 7 BAR CHARTS

rectangle; we’ll define the class style rule soon. We set the x coordinate of each bar to the
ordinal scale and set both the y coordinate and the height attribute to the linear scale.

We also add a mouseover event handler and put a call to a function that we will soon
create called transitionVisualization(). This function transitions the stacked bar
chart that we will make over the bar chart when we mouse over one of the bars.

svg.selectAll(".bar")
.data(nested data)
.enter().append("rect")
.attr("class", "bar")
.attr("x", function(d) { return xScale(d.key); })
.attr("width", xScale.rangeBand())
.attr("y", function(d) { return yScale(d.values.length) - 50; })
.attr("height", function(d) { return h - yScale(d.values.length); })
.on("mouseover", function(d){
transitionVisualization (1)

1)

Let’s also add in a call to a function that we will create called drawAxes ():
drawAxes()
The complete barchart () function looks like this:

function barchart(){
svg.attr("transform”, "translate(" + margin.left + "," + margin.
top + ")");
var xScale = d3.scale.ordinal()
.rangeRoundBands ([0, w], .1);
var yScale = d3.scale.linear()
.range([h, 0]);
xScale.domain(nested data.map(function(d) { return d.key; }));
yScale.domain([0, d3.max(nested data, function(d) { return d.values.
length; })1);
svg.selectAll(".bar")
.data(nested data)
.enter().append("rect")
.attr("class", "bar")

207

CHAPTER 7 BAR CHARTS

.attr("x", function(d) { return xScale(d.key); })
.attr("width", xScale.rangeBand())
.attr("y", function(d) { return yScale(d.values.length) - 50; })
.attr("height", function(d) { return h - yScale(d.values.length); })
.on("mouseover", function(d){

transitionVisualization (1)

1

drawAxes()

}

Let’s create the drawAxes () function. We place this function outside the scope of the
d3.csv() function, out at the root of the script tag.

For this chart, let’s go with a little more of a minimalist approach and draw only the
x-axis. Just like the last chapter, we draw SVG g elements and call the xAxis object:

function drawAxes(){
svg.append("g")
.attr("class", "x axis"
.attr("transform”, "translate(0," + adjustedHeight + ")")
.call(xAxis);

This draws the x-axis that gives the bar chart its category labels.

Creating a Stacked Bar Chart

Now that we have a bar chart, let’s create a stacked bar chart. First, let’s shape the data.
We want an array of objects in which each object represents a feature and has a count of
total incidents for each level.

Let’s start with a new array called grouped_data:

var grouped data = new Array();

Let’s iterate through nested _data because nested data already has taken care of
grouping by feature:

nested data.forEach(function (d) {
}

208

CHAPTER 7 BAR CHARTS

Within each pass through nested data, we create a temporary object and iterate
through each incident within the values array:

tempObj = {"Feature": d.key, "Sevi":0, "Sev2":0, "Sev3":0, "Sev4":0};
d.values.forEach(function(e){

}

Within each iteration in the values array, we test the severity of the current incident
and increment the appropriate property of the temporary object:

if(e.Severity == 1)
tempObj.Sevi++;
else if(e.Severity == 2)
tempObj.Sev2++
else if(e.Severity == 3)
tempObj.Sev3++;
else if(e.Severity == 4)
tempObj.Sev4++;

The complete code to create the grouped data array looks like the following:

nested data.forEach(function (d) {
tempObj = {"Feature": d.key, "Sevi":0, "Sev2":0, "Sev3":0, "Sev4":0};
d.values.forEach(function(e){
if(e.Severity == 1)
tempObj.Sevi++;
else if(e.Severity == 2)
tempObj.Sev2++
else if(e.Severity == 3)
tempObj.Sev3++;
else if(e.Severity == 4)
tempObj.Sev4++;
9
grouped_data[grouped data.length] = tempObj
};

209

CHAPTER 7 BAR CHARTS

Perfect! Next, we create a function in which we draw the stacked bar chart within the
scope of the d3.csv() function:

function stackedBarChart(){
}

Here’s where it gets interesting. Using the d3. layout.stack() function, we
transpose our data so that we have an array in which each index represents one of the
levels of severity and contains an object for each feature that has a count of each incident
for the respective level of severity:

var sevStatus = d3.layout.stack()(["Sevi", "Sev2", "Sev3", "Sev4"].
map (function(sevs)
{
return grouped data.map(function(d) {
return {x: d.Feature, y: +d[sevs]};
}s
1)

We next use sevStatus to create domain maps for the x and y values of the bar
segments that we will draw:

x.domain(sevStatus[0].map(function(d) { return d.x; }));
y.domain([0, d3.max(sevStatus[sevStatus.length - 1], function(d) { return

d.yo + d.y; }1);

Next, we draw SVG g elements for each index in the sevStatus array. They serve as
containers in which we draw the bars. We bind sevStatus to these grouping elements
and set the fill attribute to return one of the colors from the array of colors.

var sevs = svg.selectAll("g.sevs")
.data(sevStatus)
.enter().append("g")
.attr("class", "sevs"
.style("fill", function(d, i) { return z(i); });

Finally, we draw the bars within the groupings that we just created. We bind a
generic function to the data attribute of the bars that just passes through whatever data
is passed to it; this inherits from the SVG groupings.

210

CHAPTER 7 BAR CHARTS

We draw the bars with the opacity set to 0, so the bars are not initially visible. We also
attach mouseover and mouseout event handlers, to call transitionVisualization()—
passing 1 when the mouseover event is fired and 0 when the mouseout event is fired (we
will flesh out the functionality of transitionVisualization() very soon).

var rect = sevs.selectAll("rect")
.data(function(data){ return data; })
.enter().append("svg:rect")
.attr("x", function(d) { return x(d.x) + 13; })
.attr("y", function(d) { return -y(d.yo) - y(d.y) + adjustedHeight; })
.attr("class", "groupedBar")
.attr("opacity", 0)
.attr("height", function(d) { return y(d.y) ; })
.attr("width", x.rangeBand() - 20)
.on("mouseover", function(d){

transitionVisualization (1)

b
.on("mouseout”, function(d){
transitionVisualization (0)

};

The complete stacked bar chart code should look like the following

function groupedBarChart(){
var sevStatus = d3.layout.stack()(["Sevi", "Sev2", "Sev3", "Sev4"].
map (function(sevs)
{
return grouped data.map(function(d) {
return {x: d.Feature, y: +d[sevs]};

};
)

x.domain(sevStatus[0].map(function(d) { return d.x; }));
y.domain([0, d3.max(sevStatus[sevStatus.length - 1], function(d) {
return d.yo + d.y; }1);
// Add a group for each sev category.
var sevs = svg.selectAll("g.sevs")
.data(sevStatus)

211

CHAPTER 7 BAR CHARTS

.enter().append("g")
.attr("class", "sevs"
.style("fill", function(d, i) { return z(i); })
.style("stroke", function(d, i) { return d3.rgb(z(i)).darker(); });
var rect = sevs.selectAll("rect")
. data(function(data){ return data; })
.enter().append("svg:rect")
.attr("x", function(d) { return x(d.x) + 13; })
.attr("y", function(d) { return -y(d.yo) - y(d.y) +
adjustedHeight; })
.attr("class", "groupedBar")
.attr("opacity", 0)
.attr("height", function(d) { return y(d.y) ; })
.attr("width", x.rangeBand() - 20)
.on("mouseover", function(d){
transitionVisualization (1)
1)
.on("mouseout", function(d){
transitionVisualization (0)

};

Creating an Overlaid Visualization

But we're not quite done yet. We've been referencing this transitionVisualization()
function, but we haven’t yet defined it. Let’s take care of that right now. Remember

how we've been using it: when a user mouses over a bar in our bar chart, we call
transitionVisualization() and passin a 1. When a user mouses over a bar in our stacked
bar chart, we also call transitionVisualization() and pass in a 1. But when a user mouses
off a bar in the stacked bar chart, we call transitionVisualization() and passina 0.

So the parameter that we pass in sets the opacity of our stacked bar chart. Because we
initially draw the stacked bar chart with the opacity at 0, we only ever see it when a user rolls
over a bar in the bar chart, and it gets hidden again when the user rolls off of the bar.

To create this effect, we use a D3 transition. Transitions are much like tweens in
other languages such as ActionScript 3. We create a D3 selection (in this case, we can

212

CHAPTER 7 BAR CHARTS

select all elements of class groupedBar), call transition(), and set the attributes of that
selection that we want to change:

function transitionVisualization(vis){
var rect = svg.selectAll(".groupedBar")
.transition()
.attr("opacity"”, vis)

We’ve now got our entire visualization, as can be seen in Figure 7-11.

General Inquiry eBook Publishing

Figure 7-11. Stacked bar chart of production incidents by feature and by severity

The completed code looks like the following, and although it’s hard to demonstrate
this functionality via a printed medium, you can see the working model on Jon'’s website
(available at https://jonwestfall.com/d3/ch7.d3.example.htm) or put the code onto
alocal web server and run it yourself:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<titlex</title>
<script src="d3.v3.js"></script>

213

https://jonwestfall.com/d3/ch7.d3.example.htm

CHAPTER 7 BAR CHARTS

<style type="text/css">

body {

font: 15px sans-serif;
}
.axis path{

fill: none;

stroke: #000;
shape-rendering: crispEdges;

}
.bar {
fill: #666666;
}
</style> </head>

<body>
<script type="text/javascript">
var w = 960,
h = 500,

x = d3.scale.ordinal().rangeRoundBands([0, w]),
y = d3.scale.linear().range([0,h]),
z = d3.scale.ordinal().range(["lightpink", "darkgray", "lightblue"])

margin = {top: 20, right: 20, bottom: 30, left: 40},
adjustedHeight = 500 - margin.top - margin.bottom;
var xAxis = d3.svg.axis()
.scale(x)
.orient("bottom");
var svg = d3.select("body").append("svg")
.attr("width", w)
.attr("height", h)
-append(“g")
function drawAxes(){
svg.append("g")
.attr("class", "x axis"
.attr("transform", "translate(0," + adjustedHeight + ")")
.call(xAxis);

214

CHAPTER 7 BAR CHARTS

function transitionVisuaization(vis){
var rect = svg.selectAll(".groupedBar")
.transition()
.attr("opacity", vis)

}
d3.csv("https://jonwestfall.com/data/productionincidents.csv",
function(error, data) {

nested data = d3.nest()
.key(function(d) { return d.Feature; })
.entries(data);
var grouped data = new Array();
//for stacked bar chart
nested data.forEach(function (d) {
tempObj = {"Feature": d.key, "Sevi":0, "Sev2":0,
"Sev3":0, "Sev4":0};
d.values.forEach(function(e){
if(e.Severity == 1)
tempObj.Sevi++;
else if(e.Severity == 2)
tempObj.Sev2++
else if(e.Severity == 3)
tempObj.Sev3++;
else if(e.Severity == 4)
tempObj.Sev4++;
1y
grouped_data[grouped data.length] = tempObj
D;
function stackedBarChart(){
var sevStatus = d3.layout.stack()(["Sev1i", "Sev2", "Sev3", "Sev4"].
map(function(sevs) {
return grouped data.map(function(d) {
return {x: d.Feature, y: +d[sevs]};

};
)

215

CHAPTER 7 BAR CHARTS

x.domain(sevStatus[0].map(function(d) { return d.x; }));
y.domain([0, d3.max(sevStatus[sevStatus.length - 1], function(d) { return
d.yo + d.y; D1);
// Add a group for each sev category.
var sevs = svg.selectAll("g.sevs")
.data(sevStatus)
.enter().append("g")
.attr("class", "sevs"
.style("fill", function(d, i) { return z(i); });
var rect = sevs.selectAll("rect")
.data(function(data){ return data; })
.enter().append("svg:rect")
.attr("x", function(d) { return x(d.x) + 13; })
.attr("y", function(d) { return -y(d.yo) - y(d.y) + adjustedHeight; })
.attr("class", "groupedBar")
.attr("opacity", 0)
.attr("height", function(d) { return y(d.y) ; })
.attr("width", x.rangeBand() - 20)
.on("mouseover", function(d){
transitionVisuaization(1)
1)
.on("mouseout”, function(d){
transitionVisuaization(0)
D;

}
function barchart(){

svg.attr("transform”, "translate(" + margin.left + "," + margin.
top + ")");
var xScale = d3.scale.ordinal()
.rangeRoundBands ([0, w], .1);
var yScale = d3.scale.linear()
.range([h, 0]);
xScale.domain(nested data.map(function(d) { return d.key; }));
yScale.domain([0, d3.max(nested data, function(d) { return d.values.
length; })1);

216

CHAPTER 7 BAR CHARTS

svg.selectAll(".bar")

.data(nested data)

.enter().append("rect")
.attr("class", "bar")
.attr("x", function(d) { return xScale(d.key); })
.attr("width", xScale.rangeBand())
.attr("y", function(d) { return yScale(d.values.length) - 50; })
.attr("height", function(d) { return h - yScale(d.values.length); })
.on("mouseover", function(d){

transitionVisuaization(1)

1)

stackedBarChart()

drawAxes ()

}
barchart();

1);
</script>
</body>
</html>

Summary

This chapter looked at using bar charts to display ranked data in the context of
production incidents. Because production incidents are essentially direct feedback from
your user base around how your product is misbehaving or failing, managing production
incidents is a critical piece of any mature engineering organization.

Managing production incidents isn’t simply about responding to issues as they
arise, however; it is also about analyzing the data around your incidents: what areas of
your application are breaking frequently, what unexpected patterns of use you see in
production that could cause these recurring issues, how to build proactive scaffolding
to prevent these and future issues. All these are questions you can answer only by fully
understanding your product and your data. In this chapter, you took your first step

toward that greater understanding.

217

CHAPTER 8

Correlation Analysis
with Scatter Plots

In the last chapter, you looked at using bar charts to analyze production incidents. You
saw that bar charts are great for displaying the differences in a ranked data set, and you
used this idea to identify areas in which issues recurred. You also used stacked bar charts
to see the granular breakdown in the severity of production incidents.

This chapter looks at correlation analysis with scatter plots. Scatter plots are charts
that plot two independent data sets on their own axes, displayed as points on a Cartesian
grid (x and y coordinates). As you'll see, scatter plots are used to try and identify
relationships between the two data points.

Note Michael Friendly and Daniel Denis have published a thoughtful and
thoroughly researched dissertation on the history of scatter plots, originally
published by the Journal of the History of the Behavioral Sciences, \ol. 41, in 2005
and available on Friendly’s website at www.datavis.ca/papers/friendly-
scat.pdf. This article is absolutely recommended reading because it tries to
trace back the very first recorded scatter plots and the first time a chart was called
a scatter plot and very deftly delineates the difference between a scatter plot and
a time series (in other words, all time series are scatter plots with time as an axis
while not all scatter plots are time series!).

219
© Tom Barker, Jon Westfall 2022

T. Barker and J. Westfall, Pro Data Visualization Using R and JavaScript,
https://doi.org/10.1007/978-1-4842-7202-2_8

https://doi.org/10.1007/978-1-4842-7202-2_8#DOI
http://www.datavis.ca/papers/friendly-scat.pdf
http://www.datavis.ca/papers/friendly-scat.pdf

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

Finding Relationships in Data

The pattern, or lack of a pattern, that the points form on a scatter plot indicates the
relationship. At a very high level, relationships can be

e Positive correlation, in which one variable increases as the other
increases. This is demonstrated by the dots forming a line trending
diagonally upward from left to right (see Figure 8-1).

Europe
35000 40000
l |
o
o]

30000
I
o

25000
|

(o]

T | T T | T T T
45000 50000 55000 60000 65000 70000 75000 80000

N.Amer
Figure 8-1. Scatter plot showing positive correlation between total phones in

North America and Europe

o Negative correlation, in which one variable increases as the other
decreases. This is demonstrated by the dots forming a line trending
downward from left to right (see Figure 8-2).

220

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

00
® 4 8
- o]
o
o
o
~ D
o
o

o

o -

- o

0@

R @
5 B 4 o
@ v o
= Co

- @

I - o

o
(o0}
3 | o
- OOﬁ
Cw

o

N —

- o o

o
° oo
- T T T T T |
0 50 100 150 200 250

Days

Figure 8-2. Scatter plot showing negative correlation between body weight and
time passing (for a person on a diet)

e No correlation, demonstrated (or not) by a scatter plot that has no
discernible trend line (see Figure 8-3).

221

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

o
o
o
o
— OO
o
o
o
o o o] o
8 7 ° o
- o o
°© o
w fe) o]
P o oo o
(=) o
3 § 1 o o 0 o
5 © © ° ° o,
o
- o o'} o o o
o © ©
o Cp
o Ie) Q0 (o] o o]
[= o o] (o]
8 o © o o
o 0© OO o]
o
O
8
- o
4 °© o
T T T T T T T
1973 1974 1975 1976 1977 1978 1979
Time

Figure 8-3. Scatter plot showing no correlation between number of accidental
deaths in the United States over years

Of course, simply identifying correlation between two data points or data sets does
not imply that there is direct cause in the relationship—hence the convention that
correlation does not imply causation. For example, see the negative correlation chart
in Figure 8-2. If we were to assume direct causation between the two axes—weight and
number of days—we would be assuming that the passing of time caused body weight to
decrease.

Although scatter plots are great for analyzing the relationship between two sets of
data, there is a related pattern that can be used to introduce a third set of data as well.
This visualization is called a bubble chart, and it uses the radius of the points in a scatter
plot to expose the third dimension of data.

222

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

See Figure 8-4 for a bubble chart that shows the correlation in length of tooth growth
in guinea pigs and doses of vitamin C administered. The third data point is the method
of delivery: either by vitamin supplement or by orange juice. It is added as the radius of
each point in the graphic; the larger circle is the vitamin supplement, and the smaller
circle is orange juice.

25 30 35
L L

Length
20
1

15

10

0.5 1.0 1.5 2.0
Dose
Figure 8-4. Correlation of tooth growth and doses of vitamin C in guinea pigs,

both by vitamin supplement and by orange juice

For our purposes in this chapter, we will use scatter plots and bubble charts to look
at the implied relationship that team velocity has with our other areas of focus, in effect
doing correlation analysis on team dynamics. We will compare things like team size and
velocity, velocity and production incidents, and so on.

223

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

Introductory Concepts of Agile Development

Let’s start by introducing some preliminary concepts of Agile development. If you are
already versed in Agile, this section will be a bit of a review. There are many flavors of
Agile development, but the high-level concepts that most have in common are the ideas
of time boxing a body of work. Time boxing enables the team to focus on one thing and
finish it, allowing the stakeholders to quickly give feedback on what was completed.
This short feedback loop allows for teams and stakeholders to pivot, or react and change
direction as requirements and even industries change.

This span of time that the team works on the body of work—whether it is one
week, three weeks, or what have you—is called a sprint. At the end of a sprint, the team
doing the work should have releasable code, though releasing after each sprint is not a
requirement.

Sprints begin with a planning session in which teams define the body of work,
and sprints end with a review session in which the team goes over the body of work
completed. Periodically during a sprint, the team grooms new work to complete; it
defines the work in user stories that list acceptance criteria. It is these user stories that
get prioritized and committed to in the planning sessions held at the beginning of each
sprint.

See Figure 8-5 for a high-level workflow of this process.

Y

Grooming > Planning > Sprint Review

Figure 8-5. High-level workflow for Agile development

User stories have story points associated with them. Story points are estimates of
the level of complexity for the story and are usually a numeric value. As teams complete
sprints, they begin to form a consistent velocity. Velocity is the average amount of story
points that a team will complete in a sprint.

Velocity is important because you use it to estimate how much your team can
complete at the start of each sprint and to project out how much of your backlog of work
the team may be able to complete from your roadmap over the course of the year.

224

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

There are a number of tools available to manage Agile projects, such as Rally (www.
rallydev.com/) or Greenhopper from Atlassian (www.atlassian.com/software/
greenhopper/overview), the same company that makes Jira and Confluence. Whatever
tool you use should provide the ability to export your data, including user point counts
for each sprint.

Correlation Analysis

To begin the analysis, let’s export a totaled sum of story points for each sprint along with
the team name. We should compile all these data points into a single file that we will
name teamvelocity.txt. Our file should look something like the following, which shows
data for the 12.1 and 12.2 sprints for the teams named Red and Gold (arbitrary names for
teams that are working on the same product just with different bodies of work):

Sprint,TotalPoints,Team
12.1,25,Gold
12.1,63,Red

12.2,54,Red

Let’s add an additional column in there to represent the total team members on each
team for each sprint. The data should now look like so:

Sprint,TotalPoints,TotalDevs, Team
12.1,25,6,Gold
12.1,63,10,Red
12.2,54,9,Red

We have also made this sample data set available, with more points, here: https://
jonwestfall.com/data/teamvelocity.txt.

Excellent! Let’s now read this into R, changing the path in the first line to be where
you have placed it:

tvFile <- "/Applications/MAMP/htdocs/teamvelocity.txt"
teamvelocity <- read.table(tvFile, sep=",", header=TRUE)

225

http://www.rallydev.com/
http://www.rallydev.com/
http://www.atlassian.com/software/greenhopper/overview
http://www.atlassian.com/software/greenhopper/overview
https://jonwestfall.com/data/teamvelocity.txt
https://jonwestfall.com/data/teamvelocity.txt

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

Creating a Scatter Plot

Now create a scatter plot using the plot () function to compare the total points that the
teams completed in each sprint against how many members were on the team for each
sprint. We pass teamvelocity$TotalPoints and teamvelocity$TotalDevs as the first
two parameters, set the type to p, and give meaningful labels for the axes:

plot(teamvelocity$TotalPoints,teamvelocity$TotalDevs, type="p", ylab="Team
Members", xlab="Velocity", bg="#CCCCCC", pch=21)

This creates the scatter plot that we can see in Figure 8-6; we can see that as we
add more members to a team, the number of story points that they can complete in an
iteration, or sprint, also increases.

o
o 4 o o o
0 o o o
® - o
g c o
=]
S
2 o o oo
E
w
@
l_
<+ — o o
S e o]
o]
| T T T
20 40 60 80
Velocity

Figure 8-6. Correlation of team velocity and total team members

226

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

Creating a Bubble Chart

If we want a greater insight into the data that we have so far, for example, to show which
points belong to which team, we could visualize that information with a bubble chart.

We can create bubble charts using the symbols () function. We pass in TotalPoints and
TotalDevs into symbols(), just as we did for plot(), but we also pass in the Team column
into a parameter named circles. This specifies the radius of the circle to draw on the chart.
Because for our example Team is a string, R converts it to a factor. We also set the color of the
circle with the bg parameter and the stroke color of the circle with the fg parameter.

symbols(teamvelocity$TotalPoints, teamvelocity$TotalDevs, circles=as.
factor(teamvelocity$Team), inches=0.35, fg="#000000", bg="#CCCCCC",
ylab="Team Members", xlab="Velocity")

The previous R code should produce a bubble chart that looks like Figure 8-7.

12

O
O

10

QO

Team Members
6
1

T T T T T
20 40 60 80 100

Velocity

Figure 8-7. Correlation of team velocity, total team members, with size of bubble
indicating team

227

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

Visualizing Bugs

The bubble chart shown in Figure 8-7 is of limited use, mainly because the team
breakdown is not really a relevant data point. Let’s take the teamvelocity.txt file and
begin to layer in more information. We already discussed tracking bug data back in
Chapter 6; now let’s use our bug-tracking software and add in two new bug-related data
points: the total bugs in each team’s backlog at the end of each sprint and how many
bugs were opened within each sprint. We’ll name the columns for these new data points
BugBacklog and BugsOpened, respectively.

The updated file should look something like this:

Sprint,TotalPoints,TotalDevs, Team,BugBacklog,BugsOpened
12.1,25,6,Gold,125,10
12.2,42,8,Gold, 135,30
12.3,45,8,Gold, 150,25

Let’s next create a scatter plot with this new data. We'll first compare velocity against
bugs opened during each iteration:

plot(teamvelocity$TotalPoints,teamvelocity$BugsOpened, type="p",
xlab="Velocity", ylab="Bugs Opened During Sprint", bg="#CCCCCC", pch=21)

This creates the scatter plot shown in Figure 8-8.

228

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

0 _
[sr]
o
o _|
o«
w0 |
- (']
=
&
o0
o
£ K T o o
=3
[a]
=]
[}
& ©
a = [oJle]
o]
w
o
@
o o o
o
o] lo] o]
o
[ToR o
o] o o)
0 © 0
o]
[a] p—
T T T T
20 40 60 80
Velocity

Figure 8-8. Correlation of team velocity and bugs opened

Now this is very interesting. There is a positive correlation between having more
people on a team and getting more done (or at least getting more complex work done),
and the more story points that are completed, the more bugs are generated. So an
increase in complexity correlates to an increase in the number of bugs created in a given
sprint. At least that seems to be implied by my data.

Let’s reflect this new data point in the existing bubble chart; instead of sizing circles
by team, we size them by bugs opened:

symbols(teamvelocity$TotalPoints, teamvelocity$TotalDevs, circles=
teamvelocity$BugsOpened, inches=0.35, fg="#000000", bg="#CCCCCC",
ylab="Team Members", xlab="Velocity", main = "Velocity by Team Size by Bugs
Opened")

229

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

This code produces the bubble chart shown in Figure 8-9; you see that the sizing of
the bubbles follows the existing pattern of positive correlation, in that the bubbles get
larger as both the number of team members and the team velocity increases.

Velocity by Team Size by Bugs Opened

o~
0cO)
o(_‘,()o
® - O
w
: ©
o
5
s © o o O
E
©
®
}_
<+ - o O
o o
D—
] | I] |
20 40 60 80 100

Velocity

Figure 8-9. Correlation of team velocity and team size, where circle size indicates
bugs opened

Let’s next create a scatter plot to look at the total bug backlog after each sprint:

plot(teamvelocity$TotalPoints,teamvelocity$BugBacklog, type="p",
xlab="Velocity", ylab="Total Bug Backlog", bg="#CCCCCC", pch=21)

This code produces the chart shown in Figure 8-10.

230

Total Bug Backlog

150

100

50

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

o]
o
o]
5o} o]
© o o @
o
o
o]
T 1
60 80
Velocity

Figure 8-10. Correlation of team velocity by total bug backlog

This figure shows that no correlation exists. This could be because of any number
of reasons: maybe the team has been fixing bugs during the sprint, or maybe they are
closing all the bugs opened during the course of the iteration. Determining the root
cause is beyond the scope of the scatter plot, but we can tell that while the bugs being
opened and the level of complexity increases, the total bug backlog does not increase.

231

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

Visualizing Production Incidents

Let’s next layer in another data point into the file; we’ll add a column for production
incidents opened against the work done during the sprint. To be very specific, when a
body of work in a sprint is completed, it is released to production, and a release number
is generally associated with that release. This last data point we discuss is concerned
with tracking issues in production against the release for a given iteration. Not issues that
came in during the iteration; issues that came in once the work done in the iteration was
pushed to production.

Now let’s add in the last column, named ProductionIncidents:

Sprint,TotalPoints,TotalDevs, Team,BugBacklog,BugsOpened,ProductionIncidents
12.1,25,6,Gold,125,10,1
12.2,42,8,Gold, 135,30,3
12.3,45,8,Gold, 150,25,2

Great! Let’s next create a new bubble chart with this data, comparing total story
points completed, bugs opened each iteration, and production incidents per release:

symbols(teamvelocity$TotalPoints, teamvelocity$BugsOpened, circles=team
velocity$ProductionIncidents, inches=0.35, fg="#000000", bg="#CCCCCC",
ylab="Bugs Opened", xlab="Velocity", main = "Velocity by Bugs Opened by
Production Incidents Opened")

This code creates the chart shown in Figure 8-11.

232

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

Velocity by Bugs Opened by Production Incidents Opened

30

Bugs Opened
20
|

10
O

o
P o
@
S

20 40 60 80 100

Velocity

Figure 8-11. Correlation of team velocity and bugs opened, where the size of the
circle indicates the number of production incidents

From this chart, you can see that, at least according to our sample data, there exists a
positive correlation between total story points completed, bugs opened, and production
incidents opened for a given sprint.

Finally, now that all the data is layered into the flat file, we can create a scatter plot
matrix. This is a matrix of all the columns compared with each other with scatter plots.
We can use the scatter plot matrix to look at all the data at once and quickly pick out any
correlation patterns that may exist in the data set. We can create a scatter plot matrix
with just the plot () function or with the pairs() function in the graphics package:

plot(teamvelocity)
pairs(teamvelocity)

233

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

Either one produces the chart shown in Figure 8-12.

20 60 1.0 14 18 0 10 25
L1 L1 1111 11111
[=] (=] oo o0 [=J
b o o o o d o o —
(3 o) o o o o o b o| ©
) oo o o @ oo © o F «
Sprint o © o [+] o O o O [+] -
o o o] [+] @ o o Do —
o d od oc? o o od o
o 3 —
000 000D D0 O 80 m___Oofh Qo oo ool © 2
© G o 9 To T g g
7]) o o
g R © 00° d o 808 °§ B8 oBo 880
Bo o7 o] | eree ||, 8 R go
? o0 o] 8 =] 8 o] [+ § {+]
& T °a he a8 o
=]
& oo ao é ° é o o -2
80 =] OS m% Q § ?O s 0% d o 80 8 s
D 000 oo TotalDevs +] L+] o |00 2 DOOO 2 [+]
D =] o0 o] o] [+] o0 le] —
oo b ° 23 3 -~
=000 0000Ug W | [*] TOUT (oo | PWoOo TUUU OU0
o
< : Team
3 00000000 LoDon O 00 0 000 b o omoq R o a oo
9 T GRS G O To U%
a o o q g 3
o° 0,0 8 o o -
B 03090 q | co g o oBogg BugBackiog m%B b,%8o o000 |-
o] [+] [+] o
o 0o bo © o o E bo - R
B P o P o o B
L* 1=} o =] L= d
wn
o b @ o g
-4 o o o d od
o -1 00 @ [o) q ® BugsOpened o o
2 ﬁoooo q 0ORB oo B g b o o 8080 oo
o S0 of ® b © o loa 8 BA °
T q ™ Tq P TO T — E
o o o d o o
o o @ o| p d oo o o -~
o o @ co| p d © o o
q o ° d o o Productionincidentf™ ©
o [+] o @ o 00 s o @ o0 0O =
D Q o] [*] L*] o] g [+] Q [+]
po co o | p_ omo po 0 0 © b 9 Pg9° 9 g™ - o
»] 0 0 .0 0 [w] e}
L L I i I | L
122 126 2 6 10 50 150 2 6 10

Figure 8-12. Scatter plot matrix of our complete data set

In Figure 8-12, each row represents one of the columns in the data frame, and
each scatter plot represents the intersection of those columns. When you scan over
each scatter plot in the matrix, you can clearly see the correlation patterns in the
combinations already covered this chapter. While an effective visualization, by looking at
so many variables at the same time, the eye can easily get fatigued. It’s important to think

234

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

about how just because you can put everything in one figure, you might not want to. You
may consider subsetting your data to just certain columns of interest, making a figure
like this easier to walk through.

Interactive Scatter Plots in D3

So far in this chapter, we've been creating different scatter plots to represent the data
combinations that we wanted to look at. But what if we want to create a scatter plot that
allows us to select the data points on which the axes were based? With D3, we can do just
that!

Adding the Base HTML and JavaScript

Let’s start with the base HTML structure that has d3. js included as well as the base CSS:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title></title>
<style>
body {
font: 15px sans-serif;
}
.axis path{
fill: none;
stroke: #000;
shape-rendering: crispEdges;
}
.dot {
stroke: #000;
}
</style>
</head>
<body>

235

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

<script src="d3.v3.js"></script>
</body>
</html>

Let’s next add in the script tag to hold the chart. Just like the previous D3 examples,
include the starting variables, margin, x and y range objects, and x- and y-axis objects:

<script>
var margin = {top: 20, right: 20, bottom: 30, left: 40},
width = 960 - margin.left - margin.right,
height = 500 - margin.top - margin.bottom;
var x = d3.scale.linear()
.range([0, width]);
var y = d3.scale.linear()
.range([height, 0]);
var xAxis = d3.svg.axis()
.scale(x)
.orient("bottom");
var yAxis = d3.svg.axis()
.scale(y)
.orient("left");
</script>

Let’s also create the SVG tag on the page as in the previous examples:

var svg = d3.select("body").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)

.append("g")
.attr("transform”, "translate(" + margin.left + "," + margin.top + ")");

Loading the Data

Now we need to load in the data using the d3.csv() function. In all previous D3
examples, most of the work was done in the scope of the callback function, but for
this example, we need to expose our functionality publicly so we can change the data

236

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

points via form select elements. Yet we still need to drive the initial functionality from
the callback function because that’s when we will have our data, so we will set up our
callback function to call stubbed out public functions.

We set a public variable that we call chartData to the data returned from the flat file
and call two functions called removeDots() and setChartDots():

d3.csv("teamvelocity.txt", function(error, data) {
chartData = data;
removeDots ()
setChartDots("TotalDevs", "TotalPoints")

1

Notice that we passed in "TotalDevs" and "TotalPoints" to the setChartDots()
function. This is to prime the pump because they will be the initial data points we show
when the page loads.

Adding Interactive Functionality

Now we need to actually create the things we stubbed out. First, let’s create the variable
chartData at the root of the script tag where we set the other variables:

var margin = {top: 20, right: 20, bottom: 30, left: 40},
width = 960 - margin.left - margin.right,
height = 500 - margin.top - margin.bottom,
chartData;

Next, we create the removeDots () function, which selects any circles or axes on the
page and removes them:

function removeDots(){
svg.selectAll("circle")
.transition()
.duration(0)
.remove()
svg.selectAll(".axis"
.transition()
.duration(0)
.remove()

237

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

And, finally, we create the setChartDots() functionality. The function accepts
two parameters: xval and yval. Because we want to make sure that the D3 transitions
are finished running and they have a 250-millisecond default runtime, even when we
set the duration to 0, we will wrap the contents of the function in a setTimeout () call,
so we wait 300 milliseconds before starting to draw our chart. If we don’t do this, we
could enter into a race condition in which we are drawing to screen as the transition is
removing from the screen.

function setChartDots(xval, yval){
setTimeout (function() {
}, 300);
}

Within the function, we set the domains of the x and y scale objects using the xval
and yval parameters. These parameters correspond to the column names of the data
points that we will be charting:

x.domain(d3.extent(chartData, function(d) { return d[xval];}));
y.domain(d3.extent(chartData, function(d) { return d[yval];}));

Next, we draw the circles to the screen, using the global chartData variable to feed it
and the passed-in columnal data as the x and y coordinates of the circles. We also grow
the axes in this function, so that we redraw the values each time an axis is changed.

svg.selectAll(".dot")
.data(chartData)
.enter().append("circle")
.attr("class", "dot")
attr("r", 3)
.attr("ex", function(d) { return x(d[xvall);})
.attr("cy", function(d) { return y(d[yval]);})
.style("fill", "#Cccccc");
svg.append("g")
.attr("class", "axis"
.attr("transform", "translate(o0," + height + ")")
.call(xAxis)
svg.append("g")
.attr("class", "axis"
.call(yAxis)

238

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS
The complete function should look like the following:

function setChartDots(xval, yval){
setTimeout (function() {
x.domain(d3.extent(chartData, function(d) { return d[xvall;}));
y.domain(d3.extent(chartData, function(d) { return d[yvall;}));
svg.selectAll(".dot")
.data(chartData)
.enter().append("circle")

.attr("class", "dot")

attr("r", 3)

.attr("ex", function(d) { return x(d[xval]);})

.attr("cy", function(d) { return y(d[yval]);})

.style("fill", "#CCCCCC");

svg.append("g")
.attr("class", "axis"
.attr("transform", "translate(0," + height + ")")
.call(xAxis)

svg.append("g")
.attr("class", "axis"
.call(yAxis)

}, 300);

Excellent!

Adding Form Fields

Let’s next add in the form fields. We’ll add two select elements, where each option
corresponds to a column in the flat file. The elements call a JavaScript function,
getFormData(), that we will define shortly:

<form>
Y-Axis:
<select id="yval" onChange="getFormData()">
<option value="TotalPoints">Total Points</option>
<option value="TotalDevs">Total Devs</option>

239

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

<option value="Team">Team</option>
<option value="BugsOpened">Bugs Opened</option>
<option value="ProductionIncidents">Production Incidents
</option>

</select>

X-Axis:

<select id="xval" onChange="getFormData()">
<option value="TotalPoints">Total Points</option>
<option value="TotalDevs">Total Devs</option>
<option value="Team">Team</option>
<option value="BugsOpened">Bugs Opened</option>
<option value="ProductionIncidents">Production Incidents
</option>

</select>

</form>

Retrieving Form Data

The last bit of functionality left is to code the getFormData() function. This function
pulls out the selected options from both select elements and use those values to pass in
to setChartDots () —after calling removeDots(), of course.

function getFormData(){
var xEl = document.getElementById("xval")
var yEl = document.getElementById("yval")
var x = xEl.options[xEl.selectedIndex].value

var y = yEl.options[yEl.selectedIndex].value
removeDots()
setChartDots(x,y)

Great!

240

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

Using the Visualization

The complete source code should look like the following:

<IDOCTYPE html>

<html>

<head>

<meta charset="utf-8">
<title></title>

<style>
body {

font: 10px sans-serif;
}

.axis path,
.axis line {
fill: none;
stroke: #000;
shape-rendering: crispEdges;
}
.dot {
stroke: #000;
}
</style>
</head>
<body>
<form>
Y-Axis:
<select id="yval" onChange="getFormData()">
<option value="TotalPoints">Total Points</option>
<option value="TotalDevs">Total Devs</option>
<option value="Team">Team</option>
<option value="BugsOpened">Bugs Opened</option>
<option value="ProductionIncidents">Production
Incidents</option>
</select>

241

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

X-Axis:
<select id="xval" onChange="getFormData()">
<option value="TotalPoints">Total Points</option>
<option value="TotalDevs">Total Devs</option>
<option value="Team">Team</option>
<option value="BugsOpened">Bugs Opened</option>
<option value="ProductionIncidents">Production
Incidents</option>
</select>
</form>
<script src="d3.v3.js"></script>
<script>
var margin = {top: 20, right: 20, bottom: 30, left: 40},
width = 960 - margin.left - margin.right,
height = 500 - margin.top - margin.bottom,
chartData;
var x = d3.scale.linear()
.range([0, width]);
var y = d3.scale.linear()
.range([height, 0]);
var xAxis = d3.svg.axis()
.scale(x)
.orient("bottom");
var yAxis = d3.svg.axis()
.scale(y)
.orient("left");
var svg = d3.select("body").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
-append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
svg.append("g")
.attr("class", "x axis"
.attr("transform”, "translate(0," + height + ")")
.call(xAxis)

242

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

svg.append("g")
.attr("class", "y axis")
.call(yAxis)
function getFormData(){
document.getElementById("xval")
document.getElementById("yval")
var x = xEl.options[xEl.selectedIndex].value

var xE1l

var yEl

var y = yEl.options[yEl.selectedIndex].value
removeDots ()
setChartDots(x,y)
}
function removeDots(){
svg.selectAll("circle")
.transition()
.duration(0)
.remove()
svg.selectAll(".axis"
.transition()
.duration(0)
.remove()
}
function setChartDots(xval, yval){
setTimeout (function() {
x.domain(d3.extent(chartData, function(d) { return d[xvall;}));
y.domain(d3.extent(chartData, function(d) { return d[yvall;}));
svg.selectAll(".dot")
.data(chartData)
.enter().append("circle")
.attr("class", "dot")
attr("r", 3)
.attr("ex", function(d) { return x(d[xval]);})
.attr("cy", function(d) { return y(d[yval]l);})
.style("fill", "#CCCCCC");
svg.append("g")
.attr("class", "axis"

243

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

.attr("transform", "translate(o0," + height + ")")
.call(xAxis)
svg.append("g")
.attr("class", "axis"
.call(yAxis)
}, 300);
}
d3.csv("teamvelocity.txt", function(error, data) {
chartData = data;
removeDots ()
setChartDots("TotalDevs", "TotalPoints")
}s
</script>
</body>
</html>

And it should create the interactive visualization shown in Figure 8-13.

Yaxs: Total Points B X-Ads: Total Points a

=]

e oW

T T T T T T
2 3 4 5 [T L)

1

Figure 8-13. Interactive scatter plot with D3

244

w

CHAPTER 8 CORRELATION ANALYSIS WITH SCATTER PLOTS

Summary

This chapter looked at correlations between the speed at which a team moves and the
opening of bugs and production issues. There is naturally a positive correlation between
these data points: when we make new things, we create new opportunities for those new
things and existing things to break.

Of course, that doesn’t mean that we should stop making new things, even if for
some reason our business units and our very industries would allow it. It means that we
need to find balance between making new things and nurturing and maintaining the
things that we already have. This is exactly what we will look at in the next chapter.

245

CHAPTER 9

Visualizing the Balance
of Delivery and Quality
with Parallel Coordinates

The last chapter looked at using scatter plots to identify relationships between sets of
data. It discussed the different types of relationships that could exist between data sets,
such as positive and negative correlation. We couched this idea in the premise of team
dynamics: Do you see any correlation between the amount of people on a team and the
amount of work that the team can complete, or between the amount of work completed
and the number of defects generated?

In this chapter, we tie together the key concepts that we have been talking about:
visualizing, team feature work, defects, and production incidents. We will tie them
together using a data visualization called parallel coordinates to show the balance
between these efforts.

What Are Parallel Coordinate Charts?

Parallel coordinate charts are a visualization that consists of N amount of vertical axes,
each representing a unique data set, with lines drawn across the axes. The lines show
the relationship between the axes, much like scatter plots, and the patterns that the
lines form indicate the relationship. We can also gather details about the relationships
between the axes when we see a clustering of lines. Let’s take a look at this using the
chart in Figure 9-1 as an example.

247
© Tom Barker, Jon Westfall 2022

T. Barker and J. Westfall, Pro Data Visualization Using R and JavaScript,
https://doi.org/10.1007/978-1-4842-7202-2_9

https://doi.org/10.1007/978-1-4842-7202-2_9#DOI

CHAPTER 9 VISUALIZING THE BALANCE OF DELIVERY AND QUALITY WITH PARALLEL COORDINATES

I | I |
DriversKilled DistanceDriven PriceofGas SeatbeltLaw

Figure 9-1. Parallel coordinates for Seatbelts data set

I constructed the chart in Figure 9-1 from the data set Seatbelts that comes built
into R. To see a breakdown of the data set, type ?Seatbelts at the R command line. I
extracted a subset of the columns available to better highlight the relationships in the
data:

cardeaths <- data.frame(Seatbelts[,1], Seatbelts[,5], Seatbelts[,6],
Seatbelts[,8])

colnames(cardeaths) <- c("DriversKilled", "DistanceDriven", "PriceofGas",
"SeatbeltLaw")

The data set represents the number of drivers killed in car accidents in Great Britain
before and after it became compulsory to wear seat belts. The axes represent the number
of drivers killed, the distance driven, the cost of gas at the time, and whether there was a
seat belt law in place.

248

CHAPTER9 VISUALIZING THE BALANCE OF DELIVERY AND QUALITY WITH PARALLEL COORDINATES

There are a number of useful ways to look at parallel coordinates. If we look at the
lines between a single pair of axes, we can see the relationships between those data sets.
For example, if we look at the relationship between the price of gas and the seat belt law,
we can see that the price of gas is constrained pretty tightly for when the seat belt law
was in place, but covered a large range of prices for when the seat belt law was not in
place (i.e., a lot of disparate lines converge on the point that represents the time before
the law, and a narrow band of lines converge on the time after the law was passed). This
relationship could imply many different things, but because I know the data, I know
it'’s because we just have a much smaller sample size for deaths after the law was put in
place: 14 years’ worth of data before the seat belt law, but only 2 years’ worth of data after
the seat belt law.

We can also trace lines across all the axes to see how each of the axes relates. This
is difficult to do with all the lines of the same color, but when we change the color and
shading of the lines, we can more easily see the patterns across the chart. Let’s take the
existing chart and assign colors to the lines (the results are displayed in Figure 9-2; also,
you'll need to install the MASS package if you don’t have it already):

library(MASS)
parcoord(cardeaths, col=rainbow(length(cardeaths[,1])), var.label=TRUE)

249

CHAPTER9 VISUALIZING THE BALANCE OF DELIVERY AND QUALITY WITH PARALLEL COORDINATES

198 21626 0.1330 1
| N

/AN

// :\\\\.

//A\
.’.lr /

AR

60
I T T]
DriversKilled DistanceDriven PriceofGas SeatbeltLaw

Figure 9-2. Parallel coordinates for Seatbelts data set, with each line a different
shade of gray

Note You need to import the MASS library to use the parcoord() function.

Figure 9-2 begins to show the patterns that exist in the data. The lines that have the
lowest number of deaths also have the most distances driven and mainly fall into the
point in time after the seat belt law was enacted. Again, note that we do have a much
smaller sample size available for post-seat belt law than we do for pre-seat belt law, but
you can see how it becomes useful and telling to be able to trace the interconnectedness
of these data points.

250

CHAPTER9 VISUALIZING THE BALANCE OF DELIVERY AND QUALITY WITH PARALLEL COORDINATES

History of Parallel Coordinate Plots

The idea of using parallel coordinates on vertical axes was invented in 1885 by Maurice
d’Ocagne when he created the nomograph and the field of nomography. Nomographs
are tools to calculate values across mathematical rules. The classic example of a
nomograph still in use today is the line on a thermometer that shows values in both
Fahrenheit and Celsius. Or think of rulers that show values in inches on one side and

centimeters on the other.

Note Ron Doerfler has written an extensive thesis on nomography available
here: http://myreckonings.com/wordpress/2008/01/09/the-art-
of-nomography-i-geometric-design/. Doerfler also hosts a site called
modern nomograms (www.myreckonings.com/modernnomograms/) that
“offers eye-catching and useful graphical calculators uniquely designed for today's
applications.”

You can see examples of modern nomograms, courtesy of Ron Doerfler, in Figures 9-3
and 9-4.

251

http://myreckonings.com/wordpress/2008/01/09/the-art-of-nomography-i-geometric-design/
http://myreckonings.com/wordpress/2008/01/09/the-art-of-nomography-i-geometric-design/
http://www.myreckonings.com/modernnomograms/

CHAPTER9 VISUALIZING THE BALANCE OF DELIVERY AND QUALITY WITH PARALLEL COORDINATES

=

-1

- m

@

e

I||III|IIII|IIII|IIII|IIII|JIII|I II|!II'| III|'III|IIII|IIII| [95)

=

T 1

b

'III.L‘III

o

@

-1

o

=]

ca =

-

IIIIII|IIII[III’[IIII|I[I |III[|IIII|IIII|FII'|IIII|'II|||I I|III‘iIIIII|IIII|IIII|II|I|I - | L1 11 ||-U

=

T R

TS

.

T = (S +0.64)"% x P2 x (1.4R3 + 9.8)"!

=

in

=

IIl|IIII|IlII|IIIIIIllIII.I|IIII|IIII

ol
in

@

o

-

-

3
—4

Figure 9-3. Nomogram demonstrating the conversion of values between the
functions S, B R, and T, the basis of the sequential probability ratio test

252

CHAPTER9 VISUALIZING THE BALANCE OF DELIVERY AND QUALITY WITH PARALLEL COORDINATES

V P

—— 2000

— 1800
— 1800
— 1700
— 1600
— 1500
— 1400
— 1300
— 1200

1100

25 cee._ 1000
p

— 900

— 800

— 700

— 600

—— 500

— 400

— 300

45 P=2xTx(R-5)/logy(R/S)=2xTxV -

35 —

. — 100
50 — L

Figure 9-4. Curved scale nomogram, courtesy of Ron Doerfler, Leif Roschier, and
Joe Marasco

Note The term parallel coordinates and the concept that it represents were
popularized and rediscovered by Alfred Inselberg while studying at the University
of lllinois. Dr. Inselberg is currently a professor at Tel Aviv University and a Senior
Fellow at the San Diego Supercomputing Center. Dr. Inselberg has also published
a book on the subject, Parallel Coordinates: Visual Multidimensional Geometry and
Its Applications (Springer, 2009). He has also published a dissertation on how to
effectively read and use parallel coordinates, entitled “Multidimensional Detective,
available from the IEEE.

253

CHAPTER9 VISUALIZING THE BALANCE OF DELIVERY AND QUALITY WITH PARALLEL COORDINATES

Finding Balance

We understand that parallel coordinates are used to visualize the relationship between
multiple variables, but how does that apply to what we have been talking about so

far in this book? So far, we discussed quantifying and visualizing the defect backlog,

the sources of the production incidents, and even the amount of work that our teams
commit to. Arguably, balancing these aspects of product development can be one of the
most challenging activities that a team does.

With each iteration, either formal or informal, team members have to decide how
much effort they should put toward each of these concerns: working on new features,
fixing bugs on existing features, and addressing production incidents from direct
feedback from users. And these are just a sampling of the nuances that every product
team must juggle; they also may have to factor in time to spend on technical debt or
updating infrastructure.

We can use parallel coordinates to visualize this balance, both for documentation

and as a tool for analysis when starting new sprints.

Creating a Parallel Coordinate Chart

There are several different approaches to creating a parallel coordinate chart. Using the
data from the previous chapter, we could look at the running totals per iteration. Recall
that the data was a total of points committed to per iteration, as well as a snapshot of
how many bugs and production incidents were in each team’s backlog, how many new
bugs were opened during the iteration, and how many members there were on the team.
The data looked much like this:

Sprint TotalPoints TotalDevs Team BugBacklog BugsOpened ProductionIncidents

1 12.10 25 6 Gold 125 10 1
2 12.20 42 8 Gold 135 30 3
3 12.30 45 8 Gold 150 25 2
4 12.40 43 8 Gold 149 23 3
5 12.50 32 6 Gold 155 24 1
6 12.60 43 8 Gold 140 22 4
7 12.70 35 7 Gold 132 9 1

254

CHAPTER 9 VISUALIZING THE BALANCE OF DELIVERY AND QUALITY WITH PARALLEL COORDINATES
To make use of this data, we can read it in to R, just as we did in the last chapter:

tvFile <- "/Applications/MAMP/htdocs/teamvelocity.txt"
teamvelocity <- read.table(tvFile, sep=",", header=TRUE)

We then can create a new data frame with all the columns from the teamvelocity
variable except the Team column. That column is a string, and the R parcoord() function,
which we use in this example, throws an error if we include strings in the object that we
pass in to it. Team information wouldn’t make sense in this context, either. The lines that
will be drawn in the chart will be representative of our teams:

t<- data.frame(teamvelocity$Sprint, teamvelocity$TotalPoints,
teamvelocity$TotalDevs, teamvelocity$BugBacklog, teamvelocity$BugsOpened,
teamvelocity$ProductionIncidents)

colnames(t) <- c("sprint", "points", "devs", "total bugs", "new bugs",
"prod incidents")

We pass the new object into the parcoord() function. We also pass the rainbow()
function into the color parameter, as well as set the var.label parameter to true, to
make the upper and lower boundaries of each axis visible on the chart:

parcoord(t, col=rainbow(length(t[,1])), var.label=TRUE)

255

CHAPTER9 VISUALIZING THE BALANCE OF DELIVERY AND QUALITY WITH PARALLEL COORDINATES

This code produces the visualization shown in Figure 9-5.

127 45 8 155 30 4

121 25 6 125 9 1
| I I | I 1

sprint points devs total bugs new bugs prod incidents

Figure 9-5. Parallel coordinate chart of different aspects of overall organizational
metrics, including points committed to per iteration, total developers by team, total
bug backlog, new bugs open, and production incidents

Figure 9-5 presents some interesting stories for us. We can see that some teams in
our data set create more bugs as they take on more points’ worth of work. Other teams
have a large bug backlog while not creating a large number of new bugs during each
iteration, which implies that they are not closing the bugs that they do open. Some teams
are more consistent than others. All contain insights that the teams can use for reflection
and continual improvement. But ultimately this chart is reactive and talks around the
main issues. It tells us what the effects of each sprint are on our respective backlogs, both
bugs and production incidents. It also tells us how many bugs were opened during each
sprint.

256

CHAPTER9 VISUALIZING THE BALANCE OF DELIVERY AND QUALITY WITH PARALLEL COORDINATES

What the figure doesn’t show is the amount of effort spent working against each
backlog. To show that, we need to do a bit of prep work.

Adding in Effort

Past chapters I mentioned Greenhopper and Rally as ways to plan iterations, prioritize
backlogs, and track progress on user stories. No matter the product you choose, it should
provide some way to categorize or tag your user stories with metadata. Some very simple
ways to accomplish this categorization without needing your software to support it
include these:

o Puttagging in the title of each user story (see Figure 9-6 for an
example of what this could look like in Rally). With this method, you
need to sum the level of effort for each category, either manually or

programmatically.

Iteration Task Status Actions._v | @

|l (B 4 [meration 1 s b 04-26 10 Days Remaining 05-09 Planned Velocity Status Accepted

- 120 0.0 0%
Al Rank & ID Name State Plan Est Task Est ToDo mp Owner

= L] (Al : 10" 00 “ oo [l : Filter |
us12 [Defect] Address allimage bugs D] 30 00 00 tomparker HFEEEMm
e us1 [Feature] Create Intermediate Preview Page o] 50 00 00 tomibarker SREEEM
e us1o [Prod Inciient] Throttie API calls D] 20 00 00 tompparker SREEHDm
uss [Prod Incident] Address navigation issue D] 10 00 00 tompparker FFEEEM

| 4hems [|
Display:[20 | O

& oefined |G 1n-Progress [© picd (@ Blocked

Figure 9-6. User stories tagged by category, Defect, Feature, or Prod Incident
(courtesy of Rally)

e Nest subprojects for each delineation of effort.

However you go about creating these buckets, you should have a way to track the
amount of effort spent during each sprint for your categories. To visualize this, just
export it from your favorite tool into a flat file that resembles the structure shown here:

iteration,defect,prodincidents,features,techdebt,innovation
13.1,6,3,13,2,1

13.2,8,1,7,2,1

13.3,10,1,9,3,2

257

CHAPTER9 VISUALIZING THE BALANCE OF DELIVERY AND QUALITY WITH PARALLEL COORDINATES

13.5,9,2,18,10,3
13.6,7,5,19,8,3

13.7,9,5,21,12,3
13.8,6,7,11,14,3
13.9,8,3,16,18,3
13.10,7,4,15,5,3

To begin using this data, we need to import the contents of the flat file into R. We
store the data in a variable named teamEffort and pass teamEffort into the parcoord()
function:

teFile <- "/Applications/MAMP/htdocs/teamEffort.txt"

teamEffort <- read.table(teFile, sep=",", header=TRUE)
parcoord(teamEffort, col=rainbow(length(teamEffort[,1])), var.label=TRUE,
main="Level of Effort Spent")

This code produces the chart shown in Figure 9-7.

258

CHAPTER9 VISUALIZING THE BALANCE OF DELIVERY AND QUALITY WITH PARALLEL COORDINATES

Level of Effort Spent

13.9 10 7 21 18 3

131 6 1 7 2 1
| | | | | 1

iteration defect prodincidents features techdebt innovation

Figure 9-7. Parallel coordinate plot of level of effort spent toward each
initiative

This chart is less about seeing relationships implied by data and more about seeing

explicit levels of effort committed to each sprint. In a vacuum, these data points are

meaningless, but when you look at both charts and compare the total bug backlog and

total production incidents, compared with the level of effort spent addressing either, you

begin to see blind spots that the team would need to address. Blind spots might be where

teams that have high bug backlogs or production incident counts are not spending

enough effort to address those backlogs.

259

CHAPTER9 VISUALIZING THE BALANCE OF DELIVERY AND QUALITY WITH PARALLEL COORDINATES

Brushing Parallel Coordinate Charts with D3

The trick to reading dense parallel coordinate plots is to use a technique called brushing.
Brushing fades the color or opacity of all the lines on the chart, except for the lines you
want to trace across the axes. We can achieve this level of interactivity using D3.

Creating the Base Structure

Let’s start by creating a new HTML file using our base HTML skeletal structure:

<!DOCTYPE html>
<html>

<head>

<meta charset="utf-8">
<title></title>

</head>
<body>
<script src="d3.v3.js"></script>
</body>
</html>

We then create a new script tag to hold the JavaScript for the chart. In this tag, we
start by creating the variables needed to set the height and width of the chart, an object
to hold the margin values, an array of axes column names, and the scale object for the x
object.

We also create variables to reference the D3 SVG line object, a reference to the D3
axis, and a variable named foreground to hold the groupings of all the paths that will be
the lines drawn between axes in the chart:

<script>
var margin = {top: 80, right: 160, bottom: 200, left: 160},
width = 1280 - margin.left - margin.right,

height = 800 - margin.top - margin.bottom,
cols =

["iteration","defect","prodincidents"”,"features","techdebt","innovation"]
var x = d3.scale.ordinal().domain(cols).rangePoints([0, width]),

y = {};

260

CHAPTER9 VISUALIZING THE BALANCE OF DELIVERY AND QUALITY WITH PARALLEL COORDINATES

var line = d3.svg.line(),
axis = d3.svg.axis().orient("left"),
foreground;

</script>

We draw the SVG element to the page and store it in a variable that we name svg:

var svg = d3.select("body").append("svg")

.attr("width", width + margin.left + margin.right)

.attr("height", height + margin.top + margin.bottom)

-append("g")

.attr("transform", "translate(" + margin.left + "," + margin.top +
")ll);
We use d3.csv to load in the teameffort.txt flat file:
d3.csv("teameffort.txt", function(error, data) {

}

So far, we're following the same format as in previous chapters: lay out variables at
the top, create the SVG element, and load in the data; most of the data-dependent logic
happens in the anonymous function that fires when the data has been loaded.

For parallel coordinates, this process changes a bit right here because we need to
create y-axes for each column in our data.

Creating a Y-Axis for Each Column

To create a y-axis for each column, we have to loop through the array that holds the
column names, convert the contents of each column to explicitly be numbers, create an
index in the y variable for each column, and create a D3 scale object for each column:

cols.forEach(function(d) {
//convert to numbers
data.forEach(function(p) { p[d] = +p[d]; });
//create y scale for each column
y[d] = d3.scale.linear()
.domain(d3.extent(data, function(p) { return p[d]; }))
.range([height, 0]);
Ds

261

CHAPTER9 VISUALIZING THE BALANCE OF DELIVERY AND QUALITY WITH PARALLEL COORDINATES

Drawing the Lines

We need to draw the lines that will traverse each axis, so we create an SVG grouping to
aggregate and hold all the lines. We assign the foreground class to the grouping (doing
so is important because we will handle the brushing of the lines via CSS):

foreground = svg.append("g")
.attr("class", "foreground")

We append SVG paths to this grouping. We attach the data to the paths, set the color
of the paths to randomly generated colors, and stub out mouseover and mouseout event
handlers. We also set the d attribute of the paths to a function that we will create called
path().

We'll come back to those event handlers in a minute.

foreground = svg.append("g")
.attr("class", "foreground")
.selectAll("path")
.data(data)
.enter().append("path")
.attr("stroke", function(){return "#" + Math.floor(Math.random()*16777215).
toString(16);})
.attr("d", path)
.attr("width", 16)
.on("mouseover”, function(d){

)

-on("mouseout”, function(d){

)

Let’s flesh out the path() function. In this function, we accept a parameter named d,
which will be an index of the data variable. The function returns a mapping of the path
coordinates with the x and y scales.

function path(d) {
return line(cols.map(function(p) { return [x(p), y[pl(d[p])]; }));

262

CHAPTER9 VISUALIZING THE BALANCE OF DELIVERY AND QUALITY WITH PARALLEL COORDINATES

The path() function returns data that looks much like the following—a
multidimensional array with each index and array consisting of two coordinate values:

[[0, 520], [192, 297.14285714285717], [384, 346.6666666666667], [576, 312],
[768, 491.1111111111111], [960, 520]]

Fading the Lines

Let’s take a step back for a second. To handle the brushing, we need to create a style rule
to fade the opacity of the lines. So let’s return to the head section of the page and create a
style tag and some style rules.

We set path.fade as the selector and set the stroke-opacity to 4%. While we're at it,
we also set body font styles and path styles.

<style>

body {
font: 15px sans-serif;
font-weight:normal;

}

path{
fill: none;
shape-rendering: geometricPrecision;
stroke-width:1;

}

path.fade {
stroke: #000;
stroke-opacity: .04;

}

</style>

Let’s return to the stubbed out event handlers. D3 provides a function called
classed() that allows us to add classes to selections. In the mouseover handler, we
use the classed() function to apply the fade style that we just created to every path in
the foreground. It fades out each line. We'll next target the current selection, using d3.
select(this) and classed() to turn off the fade styling.

263

CHAPTER 9 VISUALIZING THE BALANCE OF DELIVERY AND QUALITY WITH PARALLEL COORDINATES
In the mouseout handler, we turn off the fade style:

foreground = svg.append("g")

.attr("class", "foreground")

.selectAll("path")
.data(data)

.enter().append("path")

.attr("stroke", function(){return "#" + Math.floor(Math.
random()*16777215) . toString(16);})

.attr("d", path)
.attr("width", 16)

.on("mouseover", function(d){
foreground.classed("fade",true)
d3.select(this).classed("fade", false)

)
.on("mouseout”, function(d){
foreground.classed("fade",false)

1)

Creating the Axes

Finally, we need to create the axes:

var g = svg.selectAll(".column")
.data(cols)
.enter().append("svg:g")
.attr("class", "column")
.attr("stroke", "#000000")
.attr("transform", function(d) { return "translate(" + x(d)
SONE)
// Add an axis and title.
g.append("g")
.attr("class", "axis"
.each(function(d) { d3.select(this).call(axis.scale(y[d])); })
.append("svg:text")
.attr("text-anchor", "middle")

264

CHAPTER9 VISUALIZING THE BALANCE OF DELIVERY AND QUALITY WITH PARALLEL COORDINATES

.attr("y", -19)
.text(String);

Our complete code is as follows:

<!DOCTYPE html>

<html>
<head>
<meta charset="utf-8">
<title></title>
<style>
body {

font: 15px sans-serif;

font-weight:normal;
}
path{

fill: none;

shape-rendering: geometricPrecision;

stroke-width:1;
}
path.fade {

stroke: #000;

stroke-opacity: .04;
}
</style>
</head>
<body>
<script src="d3.v3.js"></script>
<script>
var margin = {top: 80, right: 160, bottom: 200, left: 160},

width = 1280 - margin.left - margin.right,
height = 800 - margin.top - margin.bottom,
cols = ["iteration","defect","prodincidents"”,"features",

"techdebt","innovation"]
var x = d3.scale.ordinal().domain(cols).rangePoints([0, width]),

y = {};

265

CHAPTER9 VISUALIZING THE BALANCE OF DELIVERY AND QUALITY WITH PARALLEL COORDINATES

var line = d3.svg.line(),
axis = d3.svg.axis().orient("left"),
foreground;

var svg = d3.select("body").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
-append("g")
.attr("transform", "translate(" + margin.left + "," +
margin.top + ")");
d3.csv("teameffort.txt", function(error, data) {
cols.forEach(function(d) {
//convert to numbers
data.forEach(function(p) { p[d] = +p[d]; });
y[d] = d3.scale.linear()
.domain(d3.extent(data, function(p) { return p[d]; }))
.range([height, 0]);
D;
foreground = svg.append("g")
.attr("class", "foreground")
.selectAll("path")
.data(data)
.enter().append("path")
.attr("stroke", function(){return "#" + Math.floor(Math.
random()*16777215) . toString(16);})
.attr("d", path)
.attr("width", 16)

.on("mouseover", function(d){
foreground.classed("fade",true)
d3.select(this).classed("fade", false)

1}

.on("mouseout”, function(d){

foreground.classed("fade",false)

1)

266

CHAPTER9 VISUALIZING THE BALANCE OF DELIVERY AND QUALITY WITH PARALLEL COORDINATES

var g = svg.selectAll(".column")
.data(cols)
.enter().append("svg:g")
.attr("class", "column")
.attr("stroke", "#000000")
.attr("transform", function(d) { return "translate(" + x(d)
SONE)
// Add an axis and title.
g-append("g")
.attr("class", "axis"
.each(function(d) { d3.select(this).call(axis.scale(y[d]));
9
.append("svg:text")
.attr("text-anchor", "middle")
.attr("y", -19)
.text(String);
function path(d) {
return line(cols.map(function(p) { return [x(p), y[p]

dlpDI;);
1

</script>
</body>
</html>

267

CHAPTER9 VISUALIZING THE BALANCE OF DELIVERY AND QUALITY WITH PARALLEL COORDINATES

This code produces the chart shown in Figure 9-8.

fteration defect prodincidents innovation
13.9 10.0+ 7.0 3.0
65
13.8 8.5
.0
2.6
13.7 \
2.4
13.8-
/ 22
135 2.0
1.8+
13.4-
1.8
13.3-
1.4-
13.2- 12
1.6 B
13.1- 1.0- - 2- 1.0-

Figure 9-8. Parallel coordinate chart created in D3

If we roll over any of the lines, we see the brushing effect shown in Figure 9-9, in
which the opacity of all the lines, except the one currently moused over, is scaled back.

iteration defect prodincidents features techdebt innovation
139+ 10.0- 70 . 18- 3.0
65 | J
138- 9.5- / 1 fo
' 0
\ aa-
18.7- \ 8.0- / 851
/ 1
5.0
136 85- /
45 221
135 8.0- 4.0 2.0-
3.5 18-
134 7.5
3.0
18-
133 7.0- 25 6-
10+ 1.4-
2.0
13.24 < 4
151 . 1.2-
18.1- 6.0 1.0- § 2- 1.0-

Figure 9-9. Parallel coordinate chart with interactive brushing

268

CHAPTER9 VISUALIZING THE BALANCE OF DELIVERY AND QUALITY WITH PARALLEL COORDINATES

Summary

This chapter looked at parallel coordinate charts. You got a taste of their history—how
they came about originally in the form of nomograms used to show value conversions.
You looked at their practical application in the context of visualizing how teams balance
the different aspects of product development in the course of an iteration.

Parallel coordinates are the last visualization type covered in this book, but it is far
from the last type of visualization out there. And this book is far from the last word on
the subject. Something that I tell my students at the end of each semester is that hope
they will continue to use what they have learned in my class. Only by using the language
or subject that was covered, by continually playing with it, exploring it, and testing the
boundaries of it will students incorporate this new tool into their own skillset. Otherwise,
if they leave the class (or, in this case, close the book) and not think about the subject for
a good while, they will probably forget much of what we went over.

If you are a developer or technical leader, I hope that you read this book and were
inspired to begin tracking your own data. This was just a small sampling of things that
you can track. You can instrument your code to track performance metrics, as covered in
my book Pro JavaScript Performance: Monitoring and Visualization, or you can use tools
such as Splunk to create dashboards to visualize usage data and error rates. You can tap
right into the source code repository database to get such metrics as what times and days
of the week have the most commit activity to avoid scheduling meetings during those
times.

The point of all this data tracking is self-improvement—to establish baselines of
where you currently are and track progress toward where you want to be, to constantly
refine your craft, and excel at what you do.

269

Index

A

Access logs
Apache documentation, 122
data map, R
displaying regional data, 144-146
geographic data, 137, 139, 140
latitude/longitude, 141, 143
definition, 121
distributing visualization, 146, 147, 149
documentation, 122
parsing
control logic, 134-136
geolocation IP, 129-131
output fields, 132
parse log file, 125-128
process, 123
read, 124
aggregate() function, 199
Agile development, 224
Anonymous function, 58, 69, 100, 107,
108, 138, 144, 167
append() function, 98
Application programming
interface (API), 20, 90
apply() function, 57, 76, 144
as.Date() function, 155
as.matrix() function, 53
attr() function, 97, 100, 107
axis() function, 161

© Tom Barker, Jon Westfall 2022

B

Bar chart, 186
bugs, 187
D3, 203
groups, 191, 192
horizontal, 204
plot data, 197, 199
production incidents, 201
stacked, 188, 191
standard, 186, 187
Bubble charts, 222, 223, 227-229
Bug-tracking software, 154, 178,
228, 229

C

Cascading Style Sheet (CSS), 90, 206
chartData variable, 238
Cholera map, 9, 10, 117
Cite sources, 32
classed() function, 263
colnames() function, 45
Comprehensive R Archive Network
(CRAN), 34, 35
Correlation analysis, 225
bubble chart, 227
scatter plot, 226
createPlaylist() function, 67
cumsum() function, 159

T. Barker and J. Westfall, Pro Data Visualization Using R and JavaScript,

https://doi.org/10.1007/978-1-4842-7202-2

271

https://doi.org/10.1007/978-1-4842-7202-2#DOI

INDEX

D, E
Data-Driven Documents (D3), 15, 16, 95
Data frames, 47, 49-51
Data maps, 6,9, 117, 121
data() method, 99
Data types, 47
apply functions, 56, 57
data frame, 50, 51
functions, 59
lists, 54, 55
loop, 55, 56
matrices, 51, 54
Data visualization, 3, 14
analyze data, 24, 26-29
core steps, 20
ethics, 31
gather data, 20-23
history, 8, 14
identify a problem, 20
visualize data, 30
Data visualization, D3, 99
bar chart, creating, 103-109
binding data, 100-103
CSS, 90
definition, 87
history, 95
HTML, 88, 89, 114
JavaScript, 94
loading external data, 111-113
setting up project, 97
SVG, 91-93, 98
d3.csv function, 167, 205,

208, 210, 236
d3.layout.stack() function, 210
d3.nest() function, 168, 206
Document Object Model (DOM), 90

272

drawAxes() function, 208
d3.text() function, 111, 113
D3 transition, 213, 238

F

fromJSON() function, 25

G

Generic functions, 64, 210
getElementByld() function, 94
getFormData() function, 240
getLocationbylIP() function, 129
GitHub, 195, 196

Google Trends, 4, 5,7, 17, 18
Grouped bar charts, 191, 192
gsub() function, 138

H

Heroku, 193-195
Histograms, 5, 6
Horizontal bar chart, 204
HyperText Markup

Language (HTML), 78

Import data, 43, 44

column names, 46

header, 44

row identifiers, 45

string delimiter, 45
Information graphics, 3, 12, 14
Integrated development

environment (IDE), 76

J,K

JavaScript, 85, 87, 89, 91, 94

L

las parameter, 200
Lexical scoping, 59
library() function, 42, 137
lines() function, 164

map() function, 55, 138, 139
match.map() function, 138
Matrices, 51, 54

matrix() function, 52, 53

methods() function, 65

mode() function, 47

Modern browser architecture, 88, 89
Modern revitalization, 12

N

Negative correlation, 220-222, 247
new() function, 69
Nomogram, 251-253, 269

O

order() function, 156, 200

P

pairs() function, 233

par() function, 200

Parallel coordinate chart, 247, 254, 256
adding effort, 257, 259
D3

INDEX

axes, 264, 268
base structure, 260
draw lines, 262
fade lines, 263
interactive brushing, 268
Y-axis, 261
history, 251
parcoord() function, 255, 258
parseLogLine() function, 125, 128
parseLogs.php, 124
paste() function, 48
path() function, 262, 263
Pie charts, 11
plot() function, 66, 161, 164, 226
plot() generic function, 65
Positive correlation, 220, 229, 230
Production incidents, 193, 232, 233, 240

Q

quantile() function, 74

R

R
object-oriented programming
creating classes, 63
IUser interface, 64
S3 classes, 64-66
S4 classes, 68-70
statistical analysis, 70, 71, 73-76
Radiation Dose Chart, 12, 13
rainbow() function, 255
read() function, 43
removeDots() function, 237
R environment, 33
command line, 37
commands history, 38, 39

273

INDEX

R environment (cont.)
console, 37
documentation, 39
home page, 34
installation on Mac, 36
packages, 40, 41

RStudio IDE
bottom-right pan, 78
definition, 76
R markdown, 78, 80-82
RPubs, 83-85

S

Scalable Vector Graphics (SVG), 91, 205
scale() function, 105
Scatter plot, D3
D3, 235
form data, 240
form fields, 239
functionality, 238
HTML/JavaScript, 235, 236
loading data, 236, 238
negative correlation, 221
no correlation, 222
relationship, 220
visualization, 241, 244
select() function, 97
setChartDots() function, 237
setClass() function, 68
setMethod() function, 69
setwd() function, 38
Sparklines, 14
Splunk, 15, 16, 269
Stacked bar charts, 188, 191, 202, 208, 213
substr() function, 48, 49

274

summary() function, 73, 75
symbols() function, 227

T

table() function, 157, 163, 202

Tabular data, 3

Team velocity, 231

Time series charts, 4
transitionVisualization() function, 207, 212

U

UseMethod() function, 68

\'

Visualizing defects over time

bug-tracking software, 154

D3
adding interactivity, 175-180, 182
drawing page, 169, 170, 172-175
HTML skeletal structure, 166
reading data, 167, 168

data, 154

data analysis, R
bug count, 157, 159, 161, 162
examining bugs, 163-166

peers, 153

W XY,Z

Wolfram|Alpha, 19

World Wide Web Consortium (W3C), 122
wrapper() function, 60

writeRLog() function, 133

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Background
	What Is Data Visualization?
	Time Series Charts
	Bar Charts
	Histograms
	Data Maps
	Scatter Plots
	History
	Modern Landscape

	Why Data Visualization?
	Tools
	Languages, Environments, and Libraries
	Analysis Tools

	Process Overview
	Identify a Problem
	Gather Data
	Analyze Data
	Visualize Data

	Ethics of Data Visualization
	Cite Sources
	Be Aware of Visual Cues

	Summary

	Chapter 2: R Language Primer
	Getting to Know the R Console
	The Command Line
	Command History
	Accessing Documentation
	Packages

	Importing Data
	Using Headers
	Specifying a String Delimiter
	Specifying Row Identifiers
	Using Custom Column Names

	Data Structures and Data Types
	Data Frames
	Matrices
	Adding Lists
	Looping Through Lists
	Applying Functions to Lists
	Functions

	Summary

	Chapter 3: A Deeper Dive into R
	Object-Oriented Programming in R
	S3 Classes
	S4 Classes

	Statistical Analysis with Descriptive Metrics in R
	Median and Mean
	Quartiles
	Standard Deviation

	RStudio IDE
	R Markdown
	RPubs

	Summary

	Chapter 4: Data Visualization with D3
	Preliminary Concepts
	HTML
	CSS
	SVG
	JavaScript

	History of D3
	Using D3
	Setting Up a Project
	Using D3
	Binding Data

	Creating a Bar Chart
	Loading External Data
	Summary

	Chapter 5: Visualizing Spatial Data from Access Logs
	What Are Data Maps?
	Access Logs
	Parsing the Access Log
	Read in the Access Log
	Parse the Log File
	Geolocation by IP
	Output the Fields
	Adding Control Logic
	Creating a Data Map in R
	Mapping Geographic Data
	Adding Latitude and Longitude
	Displaying Regional Data

	Distributing the Visualization

	Summary

	Chapter 6: Visualizing Data over Time
	Gathering Data
	Data Analysis with R
	Calculating the Bug Count
	Examining the Severity of the Bugs

	Adding Interactivity with D3
	Reading in the Data
	Drawing on the Page
	Adding Interactivity

	Summary

	Chapter 7: Bar Charts
	Standard Bar Chart
	Stacked Bar Chart
	Grouped Bar Chart
	Visualizing and Analyzing Production Incidents
	Plotting Data on a Bar Chart with R
	Ordering Results
	Creating a Stacked Bar Chart

	Bar Charts in D3
	Creating a Vertical Bar Chart
	Creating a Stacked Bar Chart
	Creating an Overlaid Visualization

	Summary

	Chapter 8: Correlation Analysis with Scatter Plots
	Finding Relationships in Data
	Introductory Concepts of Agile Development
	Correlation Analysis
	Creating a Scatter Plot
	Creating a Bubble Chart

	Visualizing Bugs
	Visualizing Production Incidents
	Interactive Scatter Plots in D3
	Adding the Base HTML and JavaScript
	Loading the Data
	Adding Interactive Functionality
	Adding Form Fields
	Retrieving Form Data
	Using the Visualization

	Summary

	Chapter 9: Visualizing the Balance of Delivery and Quality with Parallel Coordinates
	What Are Parallel Coordinate Charts?
	History of Parallel Coordinate Plots
	Finding Balance
	Creating a Parallel Coordinate Chart
	Adding in Effort

	Brushing Parallel Coordinate Charts with D3
	Creating the Base Structure
	Creating a Y-Axis for Each Column
	Drawing the Lines
	Fading the Lines
	Creating the Axes

	Summary

	Index

